Zielgerichtete Therapie 19.08.2019, 07:00 Uhr

Nanokugeln als Wirkstofffähren

Viele Krebserkrankungen lassen sich heute gut behandeln, doch die Therapien haben schwere Nebenwirkungen. Das wollen Forscher vermeiden, indem sie Wirkstoffe in Nanopartikeln verpackt bis zum Tumor transportieren.

Nanokapseln im Rasterelektronenmikroskop. Über die Öffnung (Pfeil) gelangen Wirkstoffe nach außen. 
Foto: Jichuan Qiu / Georgia Institute of Technology

Nanokapseln im Rasterelektronenmikroskop. Über die Öffnung (Pfeil) gelangen Wirkstoffe nach außen.

Foto: Jichuan Qiu / Georgia Institute of Technology

Klassische Chemotherapien greifen alle Zellen im menschlichen Körper an – dementsprechend stark sind die Nebenwirkungen. Bei der zielgerichteten Therapie versuchen Forscher, diesen Nachteil zu umgehen. Materialwissenschaftler, Ärzte, Biologen und Chemiker entwickeln gemeinsam Transportvehikel, die zum Tumor gelangen. Erst vor Ort wird das Medikament freigesetzt, ohne den gesamten Körper zu belasten.  

Deshalb sind Alternativen gefragt. Weltweit arbeiten Forscher an der Möglichkeit, Krebsmedikamente in Nanokugeln zu verpacken. Ihre Idee: Erst am Tumor setzen die Partikel Krebsmedikamente hochdosiert frei, ohne den gesamten Organismus zu belasten. Drei Arbeitsgruppen haben jetzt ihre Ergebnisse präsentiert.

Top Stellenangebote

Zur Jobbörse
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
MB Global Engineering GmbH & Co. KG-Firmenlogo
Projektleiter Elektrotechnik (m/w/d) MB Global Engineering GmbH & Co. KG
Darmstadt Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Projektingenieur (m/w/d) im Bereich Maschinen- und Anlagentechnik Nitto Advanced Film Gronau GmbH
Städtische Wohnungsgesellschaft Eisenach mbH-Firmenlogo
Bauingenieur Hochbau / Architekt (m/w/d) Städtische Wohnungsgesellschaft Eisenach mbH
Eisenach Zum Job 
IT-Consult Halle GmbH-Firmenlogo
Trainee SAP HCM / Personalwirtschaft (m/w/d) IT-Consult Halle GmbH
Halle (Saale) Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Dipl. Ing. (FH) (w/m/d) der Fachrichtung Wasserwirtschaft, Umwelt, Landespflege oder vergleichbar Regierungspräsidium Freiburg
Freiburg im Breisgau Zum Job 
Dorsch Gruppe-Firmenlogo
Projektleiter (m/w/d) Tragwerksplanung mit Perspektive auf Fachbereichsleitung Dorsch Gruppe
Wiesbaden Zum Job 
Clariant SE-Firmenlogo
Techniker* für Automatisierungstechnik Clariant SE
Oberhausen Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Projektingenieur für Brückenbau / Tunnelbau / Ingenieurbau (w/m/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieurin oder Bauingenieur in der Schlichtungsstelle (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Big Dutchman International GmbH-Firmenlogo
Ingenieur / Techniker / Meister (m/w/d) Big Dutchman International GmbH
BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG-Firmenlogo
Entwickler / Konstrukteur für die Verdichterentwicklung (m/w/x) BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG
Großenhain Zum Job 
Griesemann Gruppe-Firmenlogo
Ingenieur Verfahrenstechnik / Prozessingenieur (m/w/d) Griesemann Gruppe
Wesseling, Köln Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Fachingenieur Netzbetrieb Strom (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
COO (m/w/d) über ifp | Executive Search. Management Diagnostik.
Norddeutschland Zum Job 
Hamburger Wasser-Firmenlogo
Ingenieur/Referent (m/w/d) Vergabe Ingenieur-/ Bauleistungen Hamburger Wasser
Hamburg Zum Job 
Möller Medical GmbH-Firmenlogo
Industrial Engineer (m/w/d) Möller Medical GmbH
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur "Elektrifizierte Fahrzeugantriebssysteme" THU Technische Hochschule Ulm
MÜNZING CHEMIE GmbH-Firmenlogo
Prozessoptimierer (m/w/d) für die chemische Industrie MÜNZING CHEMIE GmbH
Elsteraue Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Projektingenieur - Fernwärme/Energietechnik (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 

Arzneistoff in Nano-Glaskugeln

Laut einer Studie des Georgia Institute of Technology, Atlanta, könnten sich winzige mit Arzneistoffen und einem speziellen temperaturempfindlichen Siegel gefüllte Kügelchen aus Siliciumdioxid eignen. Im Unterschied zu früheren Verfahren, im Experiment kamen beispielsweise Gold-Nanokäfige zum Einsatz, landen keine giftigen Materialien im Körper.

Für die Herstellung ihrer Nanopartikel fertigte Younan Xia zunächst miniaturisierte Kügelchen aus Polystyrol an. Ein Goldnanopartikel wurde in die Oberfläche eingebettet. Anschließend beschichtete das Team diese Formen mit Siliciumdioxid. Nur am Gold haftete das Material nicht. Sobald sie Polystyrol und Gold entfernt hatten, blieben hohle Kugeln mit einem Durchmesser von 200 Nanometern übrig – inklusive Öffnung.

Um die kleinen Vehikel zu befüllen, wurden sie lediglich in einer arzneistoffhaltigen Lösung eingeweicht und danach abgewaschen. An der Außenseite sollten sich keine Medikamente befinden. Als Verschluss verwendeten sie einen temperaturempfindlichen, biologisch abbaubaren Kunststoff. Dieser wurde eingefärbt, um später besonders gut thermische Energie zu absorbieren. Damit stand weiteren Untersuchungen nichts im Wege.

Erste Untersuchungen im Labor 

Um den Freisetzungsmechanismus zu testen, legte Xia seine Nanokapseln in Wasser und verwendete einen Nahinfrarotlaser, um den Farbstoff im Siegel zu erwärmen. Dabei verfolgte er die Konzentration des freigesetzten Therapeutikums. Sein Test bestätigte, dass das Arzneimittel vor Einschalten des Lasers eingekapselt blieb. Die Nanokügelchen erwiesen sich als stabil. Erst wenn man sie einige Minuten erhitzte, gelangte der Wirkstoff in die umgebende Flüssigkeit. Je nach Größe der Öffnung entweichen die Medikamente schneller oder langsamer.

„Mit dieser neuen Methode könnten Infusionstherapien gezielt für manche Regionen des Körpers entwickelt und Nebenwirkungen umgangen werden, da ein Arzneimittel nur bei erhöhten Temperaturen freigesetzt wird“, sagt Younan Xia vom Georgia Institute of Technology. Manche Gewebe seien wärmer als andere. Sein Doktorand Jichuan Qiu ergänzt: „Dieses kontrollierte Freisetzungssystem ermöglicht es uns, die mit den meisten Chemotherapeutika verbundenen negativen Auswirkungen zu umgehen, indem wir das Medikament nur in einer Dosis freisetzen, die über dem toxischen Niveau an der erkrankten Stelle liegt.“

Wirkstoffe ins Nervensystem befördern 

Jetzt müssen die Wirkstofffähren in Tierexperimenten getestet werden. Diesen wichtigen Schritt haben Wissenschaftler der University of California, Los Angeles, bereits vollzogen. Sie stellten aus einem eigens entwickelten Polymer, Methacryloyloxyethylphosphorylcholin genannt, Kügelchen her, die nur einen Nanometer als Durchmesser hatten. Schon bei der Produktion wurden ihre Partikel mit dem Krebsmedikament Rituximab befüllt.

Als Modell kamen Mäuse, mit einem menschlichen B-Zell-Lymphom zum Einsatz: einer Erkrankung der Lymphknoten. Dieser Krebs hatte bei den Versuchstieren bereits gestreut. Metastasen waren im zentralen Nervensystem zu finden. Die Wissenschaftler verfolgten, wie die Tumore über einen Zeitraum von vier Monaten wuchsen oder schrumpften. Aufgrund ihrer geringen Größe gelangten Nanoteilchen durch die Blut-Hirn-Schranke: eine Barriere zwischen dem Nervensystem und dem restlichen Organismus. Tatsächlich reichte eine einzige Gabe des innovativen Therapeutikums aus, um bei Nagern alle Metastasen zu eliminieren.

Metastasen in Lymphknoten attackieren

Ein Team um Jing Liu von der University of Science and Technology of China verfolgte ähnliche Ziele mit Metastasen in Lymphknoten. Sie entwickelten spezielle Nanopartikel, „iCluster“ genannt, die über Blutbahnen bis zu Krebszellen wandern. In der sauren Umgebung eines Tumors sollen sie zerfallen und Zytostatika abgeben.

Um dies zu testen, arbeitete Liu mit Mäusen, die menschliche Tumore hatten. Er injizierten „iCluster“ mit einem Farbstoff und einem Medikament in die in die Blutbahn von Mäusen. Durch Fluoreszenzbildgebung konnte Liu nachweisen, dass Nanopartikel Krebszellen in Lymphknoten erreichen. Danach wurden die Tumorreste chirurgisch entfernt.

Etwa 40% der behandelten Mäuse waren 110 Tage später noch am Leben. Dies steht im Gegensatz zu den unbehandelten Mäusen – alle starben innerhalb von 51 Tagen nach der Operation. Ob sich die Therapieprinzipien für Menschen eignen, lässt sich derzeit noch nicht sagen. Klinische Studien sind geplant.

Mehr zum Thema:

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.