BILDGEBENDE VERFAHREN 18.12.2013, 13:31 Uhr

Die „Röhre“ hat bald ausgedient

Das MRT der Zukunft ist so klein, dass es in jeden Notfallkoffer passt. So genannter Parawasserstoff macht die heute üblichen riesigen Magnete überflüssig.

Beispiel für Magnetresonanztomografen (MRT), mit denen heute in Kliniken und Praxen gearbeitet wird. Medizintechniker in Freiburg haben jetzt ein MRT entwickelt, das sich mit winzigen Magneten begnügt. Künftig könnte es Mini-MRT geben, die so klein sind, dass sie in einen Notfallkoffer passen würden.

Beispiel für Magnetresonanztomografen (MRT), mit denen heute in Kliniken und Praxen gearbeitet wird. Medizintechniker in Freiburg haben jetzt ein MRT entwickelt, das sich mit winzigen Magneten begnügt. Künftig könnte es Mini-MRT geben, die so klein sind, dass sie in einen Notfallkoffer passen würden.

Foto: Siemens

Wer „in die Röhre“ geschoben wird unterzieht sich einer Computertomographie, bei der er von Röntgenstrahlen Schicht für Schicht durchleuchtet wird. Oder er wird in einem Magnetresonanztomographen (MRT) abgelichtet, einem anderen bildgebenden Verfahren, das Weichgewebe sichtbar macht. MRT-Geräte kosten ein paar Millionen Euro, vor allem wegen der gewaltigen supraleitenden Magnete. Diese sind nötig, um möglichst viele Wasserstoffatome im Körper in eine Richtung zu drehen. Wenn sie in diesem Zustand von einem elektromagnetischen Feld angeregt werden, beginnen sie zu tanzen. Wird das Feld abgeschaltet kehren die Atome in ihren vorherigen Zustand zurück. Dabei senden sie Signale aus, aus denen ein Bild des Körperinneren errechnet wird.

Medizintechniker in Freiburg haben jetzt ein MRT entwickelt, das sich mit winzigen Magneten begnügt und dennoch bessere Bilder liefert als die großen Brüder. Das gelang dem Team aus Freiburg im Breisgau und dem britischen York unter Leitung des Freiburger Medizinphysikers Jan-Bernd Hövener durch den Einsatz von Parawasserstoff, der, vermischt mit seinem Gegenpart Orthowasserstoff, ganz normales Wasserstoffgas bildet. Die beiden Bestandteile unterscheiden sich fundamental durch ihre magnetische Orientierung, also ihre Spins.

Parawasserstoff hat die Fähigkeit, den Spin anderer Atome, mit denen er in Berührung kommt, in eine bestimmte Richtung zu drehen. Das Phänomen heißt Hyperpolarisation. Die Richtung wird durch ein schwaches äußeres Magnetfeld vorgegeben. Die Forscher arbeiten mit Pyridin, einem Grundstoff für die Herstellung von MRT-Kontrastmitteln. Vom Einsatz im Tier oder im Menschen ist das Verfahren noch weit entfernt, aber durchaus denkbar. Denn Parawasserstoff ist für den Menschen ungefährlich.

Bisher nur Tests im Reagenzglas

In ein mit Pyridin gefülltes Reagenzglas, neben dem ein kleiner Magnet steht, leiten die Wissenschaftler Parawasserstoff ein. Der zwingt einer Vielzahl von Pyridinatomen seine magnetische Richtung auf. Dann geht es weiter wie im klinischen MRT. Ein hochfrequentes elektromagnetisches Feld stört kurzzeitig diese Ordnung. Bei der Rückkehr in ihre normale Position senden die Atome Signale aus, aus denen ein Bild berechnet wird.

Hyperpolarisation ist schon lange bekannt. Als Spin-Verstärker dienen meist Edelgase, die aber nur eine einzige MRT-Aufnahme zulassen, weil sie dabei ihre Fähigkeit verlieren, andere Atome auszurichten. Parawasserstoff dagegen ist unverwüstlich. Er wird mit Hilfe eines Katalysators bei einer Temperatur von minus 253 Grad Celsius vom Orthowasserstoff getrennt. Der Parawasserstoff kann beliebig lange gelagert werden, ohne seine magnetische Ausrichtung zu verlieren. Mag sein, dass künftig jeder Notfallkoffer mit einem Mini-MRT bestückt ist.

Von Wolfgang Kempkens
Das könnte sie auch interessieren

Top 5 Medizin

Top Stellenangebote

Hochschule Kaiserslautern-Firmenlogo
Hochschule Kaiserslautern Professur im Bereich Leistungselektronik und Elektronik (W2) Kaiserslautern
Hochschule Ostwestfalen-Lippe-Firmenlogo
Hochschule Ostwestfalen-Lippe W2-Professur Elektromechanik und Mechatronik Lemgo
Technische Universität Dresden-Firmenlogo
Technische Universität Dresden Professur (W3) für Luftfahrzeugtechnik Dresden
Fachhochschule Dortmund-Firmenlogo
Fachhochschule Dortmund Professorin / Professor für das Fach Medizintechnik Dortmund
Generalzolldirektion-Firmenlogo
Generalzolldirektion Diplomingenieur/in / Technische/r Beamtin/-er für das Funk- und Telekommunikationswesen Nürnberg
GULP Solution Services GmbH & Co. KG-Firmenlogo
GULP Solution Services GmbH & Co. KG Entwicklungsingenieur / Konstrukteur Röntgenstrahler (m/w) Hamburg
GULP Solution Services GmbH & Co. KG-Firmenlogo
GULP Solution Services GmbH & Co. KG Quality Assurance Engineer in der Röntgentechnik (m/w) Hamburg
HEMA Maschinen- und Apparateschutz GmbH-Firmenlogo
HEMA Maschinen- und Apparateschutz GmbH Entwicklungskonstrukteur (m/w) Seligenstadt
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Deutsches Elektronen-Synchrotron DESY Architektin (w/m) für den Forschungscampus DESY Hamburg
Duale Hochschule Gera-Eisenach-Firmenlogo
Duale Hochschule Gera-Eisenach Professur (W2) Engineering mit Schwerpunkt Produktentwicklung Eisenach
Zur Jobbörse