Maschinelles Lernen 01.06.2023, 07:00 Uhr

Effektivere Trainingsmethoden dank neuem Algorithmus

Forschende des MIT haben herausgefunden, dass die Kombination zweier Trainingsmethoden zu einem deutlich besseren Ergebnis führt. Zudem kommen sie auf diese Weise noch viel schneller ans Ziel. Ihre Forschungsergebnisse sollen nun als Basis auch weiteren Untersuchungen dienen.

Symbolbild für maschinelles Lernen

MIT-Forschende haben mit einem neuen Algorithmus das maschinelle Lernen vermutlich deutlich vorangebracht.

Foto: Jose-Luis Olivares/MIT

Damit maschinelles Lernen zum Beispiel bei Robotern oder anderen Systemen funktioniert, bedarf es unterschiedlicher Algorithmen, die wiederum den Trainingsprozess unterstützen. Hauptsächlich gibt es dabei zwei Ansätze: das sogenannte Nachahmungslernen und das Verstärkungslernen. Forschende des MIT haben das nun miteinander kombiniert und erzielten damit erstaunliche Ergebnisse. Beim Nachahmungslernen geht es darum, dass der Schüler praktisch das nachmachen soll, was der Lehrer vorgibt. Beim Verstärkungslernen agiert der Schüler dagegen eigenständiger und soll durch den klassischen Prozess Versuch und Irrtum etwas dazulernen.

Algorithmus der TU Graz sorgt für Sicherheit im Internet der Dinge

Nachdem die Forschenden des MIT diese beiden Ansätze miteinander kombinierten, konnte das System die Aufgaben deutlich effektiver erlernen, als wenn nur eine Art des Lernens zum Einsatz gekommen wäre. „Diese Kombination aus Lernen durch Versuch und Irrtum und dem Befolgen eines Lehrers ist sehr wirkungsvoll. Es gibt unserem Algorithmus die Fähigkeit, sehr schwierige Aufgaben zu lösen, die mit keiner der beiden Techniken einzeln gelöst werden können“, sagt Idan Shenfeld, Hauptautor der Studie und Absolvent der Elektrotechnik und Informatik. Der Forscher hat sich gemeinsam mit Aviv Tamar, Assistenzprofessor für Elektrotechnik und Information am Israel Institute of Technology (Technion) und Pulkit Agrawal, Direktor des Improbable AI Lab und Assistenzprofessor im Labor für Informatik und künstliche Intelligenz, mit diesem Thema befasst.

Effizienter Algorithmus lernt automatisch und dynamisch

Ziel der Wissenschaftler ist es, Algorithmen zu entwickeln, die auf Prinzipien basieren und bei denen man möglichst wenig manuell einstellen muss, damit sie eine hohe Leistung erbringen. Um das zu erreichen, wählten sie erstmals einen anderen Weg: Sie bildeten praktisch zwei Schüler gleichzeitig aus. Der eine profitierte von der Kombination beider Lernmethoden, der andere konnte lediglich das Verstärkungslernen einsetzen. Ihre Idee: Die Gewichtung der Verstärkungs- und Nachahmungslernziele des ersten Schülers automatisch und dynamisch anzupassen. Und genau dafür brauchten sie den zweiten Schüler. Ein eigens angepasster Algorithmus verglich während der Studie die beiden Schüler und konnte so das Lernen gezielt steuern.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
VIVAVIS AG-Firmenlogo
Sales Manager Bahn (m/w/d) VIVAVIS AG
Berlin, Home-Office Zum Job 
Alhäuser + König Ingenieurbüro GmbH-Firmenlogo
Ingenieur:in für Elektrotechnik / Master / Bachelor /Diplom (m/w/d) Alhäuser + König Ingenieurbüro GmbH
Bonn, Hachenburg Zum Job 
Stadtwerke Rüsselsheim GmbH-Firmenlogo
Messtechniker als Spezialist Gerätemanagement Strom (m/w/d Stadtwerke Rüsselsheim GmbH
Rüsselsheim Zum Job 
Agile Robots SE-Firmenlogo
Senior Projektingenieur - Industrial Automation (m/w/d) Agile Robots SE
München Zum Job 
Hochschule für angewandte Wissenschaften Kempten-Firmenlogo
Professur (w/m/d) Elektrische Antriebstechnik Hochschule für angewandte Wissenschaften Kempten
Kempten Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Technische Hochschule Deggendorf-Firmenlogo
Forschungsprofessur oder Nachwuchsprofessur (m/w/d) Industrielle Robotik Technische Hochschule Deggendorf
Bundesamt für Wirtschaft und Ausfuhrkontrolle-Firmenlogo
Elektro- bzw. Informationstechnikerinnen und -techniker (w/m/d) (FH-Diplom/Bachelor) für den Bereich Exportkontrolle Bundesamt für Wirtschaft und Ausfuhrkontrolle
Eschborn Zum Job 
Broadcast Solutions GmbH-Firmenlogo
Elektroingenieur* in Vollzeit (m/w/d) Broadcast Solutions GmbH
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur "Elektrische Antriebe" THU Technische Hochschule Ulm
Mercer Stendal GmbH-Firmenlogo
Ingenieur / Techniker (m/w/d) Automatisierungstechnik Mercer Stendal GmbH
Arneburg Zum Job 
Mercer Stendal GmbH-Firmenlogo
Betriebstechniker (m/w/d) Prozessleittechnik Mercer Stendal GmbH
Arneburg Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)-Firmenlogo
Ingenieurin / Ingenieur (m/w/d) (FH-Diplom/Bachelor) in der Fachrichtung Elektrotechnik Schwerpunkt Nachrichtentechnik/Informationstechnik oder vergleichbar Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)
Koblenz Zum Job 
Solventum Germany GmbH-Firmenlogo
Prozessingenieur Automatisierungstechnik / Mechatronik / Maschinenbau (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
Josefs-Gesellschaft gAG-Firmenlogo
Leitung (m/w/d) Gebäudemanagement Josefs-Gesellschaft gAG
Hochheim am Main, Rüdesheim am Rhein, Oberursel Zum Job 
Desitin Arzneimittel GmbH-Firmenlogo
Projektmanager Gebäudeautomation (m/w/d) Desitin Arzneimittel GmbH
Hamburg Zum Job 
Desitin Arzneimittel GmbH-Firmenlogo
Projektmanager TGA (m/w/d) Desitin Arzneimittel GmbH
Hamburg Zum Job 
Wirtgen GmbH-Firmenlogo
Project Manager Product Lifecycle Management (m/w/d) Wirtgen GmbH
Windhagen Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)-Firmenlogo
Ingenieurin / Ingenieur (m/w/d) (FH-Diplom/Bachelor) in der Fachrichtung Elektrotechnik Schwerpunkt Nachrichtentechnik/Informationstechnik oder vergleichbar Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)
Koblenz Zum Job 

Der Algorithmus erkannte, wenn das Nachahmungslernen zu besseren Ergebnissen führte, dieses stärker zu gewichten. Gleiches galt für das Verstärkungslernen. Auf diese Art und Weise erzielten die Wissenschaftler eine Konzentration der passenden Lernmethoden je nach Situation. Diese dynamische Herangehensweise machte den Algorithmus anpassungsfähig und ermöglichte es ihm, während des gesamten Trainingsprozesses immer die beste Methode auszuwählen. Und genau das war der Schlüssel zum Erfolg: „Es wurde klar, dass wir die Agenten miteinander verbinden mussten, damit sie Informationen austauschen konnten, und dann den richtigen Weg finden mussten, diese Intuition technisch zu untermauern, sagt Shenfeld.

Kombination zweier Trainingsmethoden macht den Unterschied

Für ihre Studie führten die Forschenden zahlreiche Trainingsexperimente durch. So testeten sie zum Beispiel eine Navigation durch ein Lavalabyrinth. Der Algorithmus erzielte in fast allen Testumgebungen eine sehr gute Erfolgsquote. Zudem war er dabei viel schneller als andere Methoden. In einer weiteren Simulation testeten sie eine Roboterhand mit Berührungssensoren, aber ohne Sehvermögen. Die Hand musste einen Stift in die richtige Position bringen. Auch das gelang mit Bravour. Gerade diese Aufgabe, also die Neuausrichtung von Objekten, ist eine, die vermutlich viele Roboter künftig ausführen müssen, wenn mehr von ihnen in Haushalte einziehen und Bewohnerinnen und Bewohner im Alltag unterstützen. „Die neue Methode ebnet den Weg für den Bau überlegener Roboter“, sagt Pulkit Agrawal.

Abgesehen davon sind die Forschenden überzeugt, dass ihr Algorithmus das Potenzial hat, die Leistung verschiedener Anwendungen zu verbessern. Als Beispiele führen sie hier große Sprachmodelle wie GPT-4 an. Darüber hinaus eröffne ihr Forschungsergebnis auch den Weg, Ähnlichkeiten und Unterschiede zwischen Menschen und Maschinen weiter zu untersuchen, die von ihren jeweiligen Lehrern lernen. Unterstützung erhielt das Team vom MIT-IBM Watson AI Lab, der Hyundai Motor Company, dem DARPA Machine Common Sense Program und dem Office of Naval Research.

Mehr zum Thema maschinelles Lernen:

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.