Maschinelles Lernen 01.06.2023, 07:00 Uhr

Effektivere Trainingsmethoden dank neuem Algorithmus

Forschende des MIT haben herausgefunden, dass die Kombination zweier Trainingsmethoden zu einem deutlich besseren Ergebnis führt. Zudem kommen sie auf diese Weise noch viel schneller ans Ziel. Ihre Forschungsergebnisse sollen nun als Basis auch weiteren Untersuchungen dienen.

Symbolbild für maschinelles Lernen

MIT-Forschende haben mit einem neuen Algorithmus das maschinelle Lernen vermutlich deutlich vorangebracht.

Foto: Jose-Luis Olivares/MIT

Damit maschinelles Lernen zum Beispiel bei Robotern oder anderen Systemen funktioniert, bedarf es unterschiedlicher Algorithmen, die wiederum den Trainingsprozess unterstützen. Hauptsächlich gibt es dabei zwei Ansätze: das sogenannte Nachahmungslernen und das Verstärkungslernen. Forschende des MIT haben das nun miteinander kombiniert und erzielten damit erstaunliche Ergebnisse. Beim Nachahmungslernen geht es darum, dass der Schüler praktisch das nachmachen soll, was der Lehrer vorgibt. Beim Verstärkungslernen agiert der Schüler dagegen eigenständiger und soll durch den klassischen Prozess Versuch und Irrtum etwas dazulernen.

Algorithmus der TU Graz sorgt für Sicherheit im Internet der Dinge

Top Stellenangebote

Zur Jobbörse
Tagueri AG-Firmenlogo
(Junior) Consultant Funktionale Sicherheit (m/w/d) Tagueri AG
Hamburg Zum Job 
Tagueri AG-Firmenlogo
Consultant Systems Engineering (m/w/d) Tagueri AG
Hamburg Zum Job 
Funkwerk AG-Firmenlogo
Techniker / Ingenieur im Engineering Vertrieb (m/w/d) Funkwerk AG
deutschlandweit Zum Job 
ITW Fastener Products GmbH-Firmenlogo
Technische:r Vertriebsingenieur:in für VW ITW Fastener Products GmbH
Creglingen-Münster Zum Job 
Framatome GmbH-Firmenlogo
Senior Project Quality & OPEX Manager (m/w/d) Framatome GmbH
Erlangen Zum Job 
Tagueri AG-Firmenlogo
Teamleitung im Bereich Diagnose (m/w/d) Tagueri AG
Hamburg Zum Job 
Rheinmetall Electronics GmbH-Firmenlogo
Elektronikentwickler (m/w/d) Rheinmetall Electronics GmbH
Rheinmetall Electronics GmbH-Firmenlogo
Projektingenieur Kältemittelverdichter (m/w/d) Rheinmetall Electronics GmbH
Forschungszentrum Jülich GmbH-Firmenlogo
Ingenieur für Gebäudeausrüstung / Versorgungstechnik (w/m/d) Forschungszentrum Jülich GmbH
Jülich bei Köln Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieure - Schwerpunkt konstruktiver Ingenieurbau für die Bauwerksprüfung nach DIN 1076 (m/w/d) Die Autobahn GmbH des Bundes
Hamburg Zum Job 
Riedel Bau-Firmenlogo
Energieberater / Auditor (m/w/d) Riedel Bau
Schweinfurt Zum Job 
Rheinmetall Electronics GmbH-Firmenlogo
Projektmanager technische Entwicklungsaktivitäten (m/w/d) Rheinmetall Electronics GmbH
Neckarsulm Zum Job 
Diehl Aerospace GmbH-Firmenlogo
Ingenieur / Entwicklungsingenieur (m/w/d) Avionik (System) Diehl Aerospace GmbH
Nürnberg, Überlingen, Frankfurt am Main, Rostock Zum Job 
Stadtwerke Verkehrsgesellschaft Frankfurt am Main mbH-Firmenlogo
Teamleitung Haltestellen und Stationen (d/m/w) Stadtwerke Verkehrsgesellschaft Frankfurt am Main mbH
Frankfurt am Main Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) Elektro- / Kommunikationstechnik Die Autobahn GmbH des Bundes
Frankfurt am Main Zum Job 
RENOLIT SE-Firmenlogo
Ingenieur / Techniker (m/w/d) für Automatisierungstechnik RENOLIT SE
Frankenthal Zum Job 
Lahnpaper GmbH-Firmenlogo
Leitung Entwicklungslabor (m/w/d) Lahnpaper GmbH
Lahnstein Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Projektingenieur - Fernsteuerung Energienetze (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 
BREMER Hamburg GmbH-Firmenlogo
Bauleiter Schlüsselfertigbau (m/w/d) BREMER Hamburg GmbH
Hamburg Zum Job 
IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH-Firmenlogo
Ingenieur Instandhaltung (m/w/d) IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH

Nachdem die Forschenden des MIT diese beiden Ansätze miteinander kombinierten, konnte das System die Aufgaben deutlich effektiver erlernen, als wenn nur eine Art des Lernens zum Einsatz gekommen wäre. „Diese Kombination aus Lernen durch Versuch und Irrtum und dem Befolgen eines Lehrers ist sehr wirkungsvoll. Es gibt unserem Algorithmus die Fähigkeit, sehr schwierige Aufgaben zu lösen, die mit keiner der beiden Techniken einzeln gelöst werden können“, sagt Idan Shenfeld, Hauptautor der Studie und Absolvent der Elektrotechnik und Informatik. Der Forscher hat sich gemeinsam mit Aviv Tamar, Assistenzprofessor für Elektrotechnik und Information am Israel Institute of Technology (Technion) und Pulkit Agrawal, Direktor des Improbable AI Lab und Assistenzprofessor im Labor für Informatik und künstliche Intelligenz, mit diesem Thema befasst.

Effizienter Algorithmus lernt automatisch und dynamisch

Ziel der Wissenschaftler ist es, Algorithmen zu entwickeln, die auf Prinzipien basieren und bei denen man möglichst wenig manuell einstellen muss, damit sie eine hohe Leistung erbringen. Um das zu erreichen, wählten sie erstmals einen anderen Weg: Sie bildeten praktisch zwei Schüler gleichzeitig aus. Der eine profitierte von der Kombination beider Lernmethoden, der andere konnte lediglich das Verstärkungslernen einsetzen. Ihre Idee: Die Gewichtung der Verstärkungs- und Nachahmungslernziele des ersten Schülers automatisch und dynamisch anzupassen. Und genau dafür brauchten sie den zweiten Schüler. Ein eigens angepasster Algorithmus verglich während der Studie die beiden Schüler und konnte so das Lernen gezielt steuern.

Der Algorithmus erkannte, wenn das Nachahmungslernen zu besseren Ergebnissen führte, dieses stärker zu gewichten. Gleiches galt für das Verstärkungslernen. Auf diese Art und Weise erzielten die Wissenschaftler eine Konzentration der passenden Lernmethoden je nach Situation. Diese dynamische Herangehensweise machte den Algorithmus anpassungsfähig und ermöglichte es ihm, während des gesamten Trainingsprozesses immer die beste Methode auszuwählen. Und genau das war der Schlüssel zum Erfolg: „Es wurde klar, dass wir die Agenten miteinander verbinden mussten, damit sie Informationen austauschen konnten, und dann den richtigen Weg finden mussten, diese Intuition technisch zu untermauern, sagt Shenfeld.

Kombination zweier Trainingsmethoden macht den Unterschied

Für ihre Studie führten die Forschenden zahlreiche Trainingsexperimente durch. So testeten sie zum Beispiel eine Navigation durch ein Lavalabyrinth. Der Algorithmus erzielte in fast allen Testumgebungen eine sehr gute Erfolgsquote. Zudem war er dabei viel schneller als andere Methoden. In einer weiteren Simulation testeten sie eine Roboterhand mit Berührungssensoren, aber ohne Sehvermögen. Die Hand musste einen Stift in die richtige Position bringen. Auch das gelang mit Bravour. Gerade diese Aufgabe, also die Neuausrichtung von Objekten, ist eine, die vermutlich viele Roboter künftig ausführen müssen, wenn mehr von ihnen in Haushalte einziehen und Bewohnerinnen und Bewohner im Alltag unterstützen. „Die neue Methode ebnet den Weg für den Bau überlegener Roboter“, sagt Pulkit Agrawal.

Abgesehen davon sind die Forschenden überzeugt, dass ihr Algorithmus das Potenzial hat, die Leistung verschiedener Anwendungen zu verbessern. Als Beispiele führen sie hier große Sprachmodelle wie GPT-4 an. Darüber hinaus eröffne ihr Forschungsergebnis auch den Weg, Ähnlichkeiten und Unterschiede zwischen Menschen und Maschinen weiter zu untersuchen, die von ihren jeweiligen Lehrern lernen. Unterstützung erhielt das Team vom MIT-IBM Watson AI Lab, der Hyundai Motor Company, dem DARPA Machine Common Sense Program und dem Office of Naval Research.

Mehr zum Thema maschinelles Lernen:

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.