Lasertechnik als Grundlage 26.11.2018, 14:22 Uhr

Teilchenbeschleuniger auf einem Mikrochip

Elektrotechniker an der TU Darmstadt haben ein Konzept für einen winzigen, lasergetriebenen Elektronenbeschleuniger entwickelt. Anwendungen in der Medizin und in der Industrie sind denkbar.

Darstellung Prinzip Beschleunigerchip

So klein soll der neue Teilchenbeschleuniger sein. Entsprechend kostengünstig ließe er sich in großen Stückzahlen herstellen.

Foto: Hagen Schmidt / Andrew Ceballos

Kleiner, leichter, günstiger: In der Elektrotechnik können sich ganz neue Möglichkeiten eröffnen, wenn Wissenschaftler für alt bekannte Verfahren innovative Wege der Umsetzung finden. Ein gutes Beispiel sind Teilchenbeschleuniger. Normalerweise sind sie groß und teuer. An der Technischen Universität Darmstadt haben Forscher jedoch ein Konzept entwickelt, bei dem sie das Funktionsprinzip übernehmen, dafür aber andere Komponenten verwenden. Das Ergebnis soll ein Elektronenbeschleuniger sein, der auf einen Mikrochip aus Silizium passt. Ein internationales Konsortium will das Design nun in die Praxis übertragen.

Teilchenbeschleuniger sind für vielfältige Anwendungsgebiete von Bedeutung. Das fängt an bei einer Einrichtung wie CERN in Genf, wo mithilfe riesiger Teilchenbeschleuniger Grundlagenforschung betrieben wird. Aber auch in kleinerem Rahmen, etwa für die Materialforschung in der Industrie, sind sie unverzichtbar. Einen großen Stellenwert haben sie zudem für die moderne Medizin, wo sie beispielsweise die Grundlage für die konventionelle Strahlentherapie bilden. Sollte es gelingen, Teilchenbeschleuniger tatsächlich in Chip-Größe herzustellen, wäre die Entwicklung weiterer Verfahren in Sicht. Solch eine Verkleinerung gilt als sehr viel versprechend und wird daher von der amerikanischen Gordon-and-Betty-Moore-Stiftung gezielt gefördert. Von dem entsprechenden Programm – Accelerator on a Chip International Program (AchIP) – profitieren auch die Darmstädter Wissenschaftler.

Laser als Energiequelle statt Mikrowellengenerator

Die Elektrotechniker am Fachgebiet Beschleunigerphysik der TU Darmstadt haben zunächst Strukturen des Beschleunigers, die sonst aus Metall bestehen, durch Glas oder Silizium ersetzt. Glas hat eine höhere elektrische Feldbelastbarkeit als Metall. Deswegen konnten sie mit dem neuen Material die Beschleunigungsrate erhöhen. Die Strecke, die sie brauchten, um die Energie auf die Teilchen zu übertragen, wurde damit um den Faktor 10 kürzer – bei gleicher Endenergie. Außerdem haben sie als Energiequelle einen Laser genutzt, statt einem Mikrowellengenerator. Dafür verwendeten sie ein kommerziell verfügbares System, das sie durch eine komplizierte nichtlineare Optik an ihren Zweck anpassten.

Die geringe Größe des Beschleunigers bringt aber direkt eine neue Herausforderung mit sich: Die Elektronen bewegen sich im Teilchenbeschleuniger in einem Vakuum. Dieser Kanal muss aber natürlich ebenfalls verkleinert werden. Das führt wiederum dazu, dass der Elektronenstrahl stärker fokussiert werden muss, und dafür reicht die sonst übliche magnetische Technik nicht aus. Ein Team um den Nachwuchswissenschaftler Uwe Niedermayer hat hierfür eine Lösung vorgestellt: Zur Fokussierung der Elektronen nutzen die Wissenschaftler die Laserfelder selbst.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Universität zu Köln-Firmenlogo
Projektingenieur*in (TGA) im Bereich Elektrotechnik Universität zu Köln
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur als Projektleitung (w/m/d) Großprojekte Die Autobahn GmbH des Bundes
Frankfurt am Main Zum Job 
ESFORIN SE-Firmenlogo
Mitarbeiter*in Marktkommunikation & Prozesse (m/w/d) ESFORIN SE
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik - HVDC (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
FCP IBU GmbH-Firmenlogo
Projektingenieur für schalltechnische Gutachten (m/w/d) FCP IBU GmbH
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Consultant (w/m/d) Operational Strategy - TBO (Trajectory Based Operations) DFS Deutsche Flugsicherung GmbH
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurinnen und Ingenieure (w/m/d) Elektro-/Informationstechnik oder Nachrichtentechnik Bundesamt für Bauwesen und Raumordnung (BBR)
DNV-Firmenlogo
Approval Engineer - Maritime Materials & Welding (m/f/d) DNV
Hamburg Zum Job 
DNV-Firmenlogo
Approval Engineer - Maritime Propulsion & Steering (m/f/d) DNV
Hamburg Zum Job 
DNV-Firmenlogo
Approval Engineer - Maritime Piping Components (m/f/d) DNV
Hamburg Zum Job 
WISAG Gebäudetechnik Hessen Technischer Service GmbH & Co. KG-Firmenlogo
Projektleiter | Bauleiter (m/w/d) für Sicherheitstechnik WISAG Gebäudetechnik Hessen Technischer Service GmbH & Co. KG
Frankfurt am Main Zum Job 
Albtal-Verkehrs-Gesellschaft (AVG)-Firmenlogo
Instandhaltungsmanagement Strategie (m/w/d) Albtal-Verkehrs-Gesellschaft (AVG)
Karlsruhe Zum Job 
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Referent (m/w/d) Anforderungsmanagement Funktionale Systeme DFS Deutsche Flugsicherung GmbH
Jauss HR-Consulting GmbH & Co. KG-Firmenlogo
Automatisierungstechniker / Ingenieur / Techniker (m/w/d) TIA-Programmierung & Inbetriebnahme - Baustoffanlagenbau Jauss HR-Consulting GmbH & Co. KG
Raum Würzburg Zum Job 
TenneT TSO GmbH-Firmenlogo
Ingenieur als Projektleiter Umspannwerke (m/w/d) TenneT TSO GmbH
Einsatzgebiet Ostniedersachsen Zum Job 
TenneT TSO GmbH-Firmenlogo
Ingenieur Elektrotechnik als Projektleiter Umspannwerke (m/w/d) TenneT TSO GmbH
Raum Südbayern (Oberpfalz, Niederbayern, Oberbayern) Zum Job 
VCDB VerkehrsConsult Dresden-Berlin GmbH-Firmenlogo
Projektingenieur Elektromobilität Bus (m/w/d) VCDB VerkehrsConsult Dresden-Berlin GmbH
Dresden Zum Job 
Verkehrsbetriebe Karlsruhe (VBK)-Firmenlogo
Abteilungsleitung ECM 4 "Instandhaltungserbringung" (m/w/d) Verkehrsbetriebe Karlsruhe (VBK)
Karlsruhe Zum Job 
Draheim Ingenieure-Firmenlogo
Elektroplaner*in (m/w/d) Draheim Ingenieure
Hamburg, Hamm, Aachen Zum Job 
Universität zu Köln-Firmenlogo
Projektingenieur*in (TGA) im Bereich Elektrotechnik Universität zu Köln
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur als Projektleitung (w/m/d) Großprojekte Die Autobahn GmbH des Bundes
Frankfurt am Main Zum Job 
ESFORIN SE-Firmenlogo
Mitarbeiter*in Marktkommunikation & Prozesse (m/w/d) ESFORIN SE
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 

Das Konzept sieht folgendermaßen aus: Die Forscher ändern die relative Phase der Elektronen zum Laser sprunghaft und erschaffen dadurch alternierend Fokussierung und Defokussierung in den zwei Richtungen der Ebene der Chip-Oberfläche. Fürs Verständnis hilft ein praktischer Vergleich: Würde man eine Kugel auf einen Sattel legen, fiele diese herunter, unabhängig davon, in welche Richtung der Sattel geneigt ist. Dreht man den Sattel allerdings ganz gleichmäßig, bleibt die Kugel immer oben. Das gleiche Verhalten zeigen die Elektronen im Kanal auf dem Chip.

Anwendungsmöglichkeiten in der Industrie und in der Medizin

Niedermayer ist zurzeit als Gastwissenschaftler an der amerikanischen Stanford Universität, die das AchIP-Programm zusammen mit der Universität Erlangen leitet. Die Experimentierkammer, in der er an der Realisierung des Teilchenbeschleunigers arbeitet, ist so groß wie ein Schuhkarton. Das Ziel ist umso größer. Bis 2020 soll es gelingen, aus dem Chip Elektronen mit einer Energie von einem Megaelektronenvolt zu erhalten. Das entspräche der elektrischen Spannung von etwa einer Million Batterien.

Solch ein Mikrochip wäre sowohl für die Industrie als auch für die Medizin sehr interessant. Beispielsweise wäre es möglich, mit ihm eine kompakte kohärente Röntgenstrahlungsquelle zu entwickeln, mit der sich Materialien charakterisieren ließen. Eine Anwendungsmöglichkeit in der Medizin wäre unter anderem ein Beschleuniger-Endoskop, mit dem man Tumoren aus dem Inneren des Körpers mit Elektronen bestrahlen könnte – mit entsprechend weniger Nebenwirkungen.

Weitere Themen:

Ein Beitrag von:

  • Nicole Lücke

    Nicole Lücke macht Wissenschaftsjournalismus für Forschungszentren und Hochschulen, berichtet von medizinischen Fachkongressen und betreut Kundenmagazine für Energieversorger. Sie ist Gesellschafterin von Content Qualitäten. Ihre Themen: Energie, Technik, Nachhaltigkeit, Medizin/Medizintechnik.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.