Alternative zu Quantencomputer 26.02.2025, 14:00 Uhr

Mit Spintronik und Magnetwellen zu energieeffizienten Computern

Neue Ising-Maschine nutzt Magnetwellen für energieeffiziente Berechnungen bei Raumtemperatur. Alternative zu Quantencomputern mit vielfältigen Anwendungen.

Prinzip zweier Oszillatoren, die phasengleiche und phasenungleiche Schwingungsmoden erzeugen

Prinzip zweier Oszillatoren, die phasengleiche und Die Zeichnung veranschaulicht das Prinzip zweier Oszillatoren, die phasengleiche und phasenungleiche Schwingungsmoden erzeugen.

Foto: Victor H. González

Ein neuartiger Computertyp, basierend auf Spintronik und Magnetwellen, könnte als kostengünstige Alternative zu Quantencomputern dienen. Forschende der Universität Göteborg haben eine Technologie entwickelt, die kombinatorische Optimierungsprobleme energieeffizient und bei Raumtemperatur lösen kann. Netzwerke aus nanoskaligen Oszillatoren bilden das Herzstück dieser Innovation, die in künftigen KI- und Finanzanwendungen eine Rolle spielen könnte.

Spintronik: Ein Blick auf magnetische Wellen

Die Spintronik beschäftigt sich mit magnetischen Phänomenen in nanometerdünnen Materialien. Diese können durch Magnetfelder, elektrische Ströme oder Spannungen beeinflusst werden. Dabei entstehen sogenannte Spinwellen – wellenförmige Magnetisierungsänderungen, die sich ähnlich wie Schallwellen ausbreiten. Forschende haben nun gezeigt, dass sich diese Spinwellen gezielt steuern und für Rechenprozesse nutzen lassen.

Durch geschickte Steuerung der Spinwellenphase konnten Forschende der Universität Göteborg zwei sogenannte Spin-Hall-Nanoschwinger synchronisieren. Diese Oszillatoren interagieren miteinander, wodurch binäre Zustände erzeugt werden. Entscheidend ist, dass sich die Phasen dieser Wellen gezielt in Gleich- oder Gegenphase bringen lassen. Dies wird durch Veränderung des Magnetfelds, der Stromstärke oder der Spannung erreicht.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Universität zu Köln-Firmenlogo
Projektingenieur*in (TGA) im Bereich Elektrotechnik Universität zu Köln
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur als Projektleitung (w/m/d) Großprojekte Die Autobahn GmbH des Bundes
Frankfurt am Main Zum Job 
ESFORIN SE-Firmenlogo
Mitarbeiter*in Marktkommunikation & Prozesse (m/w/d) ESFORIN SE
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik - HVDC (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
FCP IBU GmbH-Firmenlogo
Projektingenieur für schalltechnische Gutachten (m/w/d) FCP IBU GmbH
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Consultant (w/m/d) Operational Strategy - TBO (Trajectory Based Operations) DFS Deutsche Flugsicherung GmbH
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurinnen und Ingenieure (w/m/d) Elektro-/Informationstechnik oder Nachrichtentechnik Bundesamt für Bauwesen und Raumordnung (BBR)
DNV-Firmenlogo
Approval Engineer - Maritime Materials & Welding (m/f/d) DNV
Hamburg Zum Job 
DNV-Firmenlogo
Approval Engineer - Maritime Propulsion & Steering (m/f/d) DNV
Hamburg Zum Job 
DNV-Firmenlogo
Approval Engineer - Maritime Piping Components (m/f/d) DNV
Hamburg Zum Job 
WISAG Gebäudetechnik Hessen Technischer Service GmbH & Co. KG-Firmenlogo
Projektleiter | Bauleiter (m/w/d) für Sicherheitstechnik WISAG Gebäudetechnik Hessen Technischer Service GmbH & Co. KG
Frankfurt am Main Zum Job 
Albtal-Verkehrs-Gesellschaft (AVG)-Firmenlogo
Instandhaltungsmanagement Strategie (m/w/d) Albtal-Verkehrs-Gesellschaft (AVG)
Karlsruhe Zum Job 
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Referent (m/w/d) Anforderungsmanagement Funktionale Systeme DFS Deutsche Flugsicherung GmbH
Jauss HR-Consulting GmbH & Co. KG-Firmenlogo
Automatisierungstechniker / Ingenieur / Techniker (m/w/d) TIA-Programmierung & Inbetriebnahme - Baustoffanlagenbau Jauss HR-Consulting GmbH & Co. KG
Raum Würzburg Zum Job 
TenneT TSO GmbH-Firmenlogo
Ingenieur als Projektleiter Umspannwerke (m/w/d) TenneT TSO GmbH
Einsatzgebiet Ostniedersachsen Zum Job 
TenneT TSO GmbH-Firmenlogo
Ingenieur Elektrotechnik als Projektleiter Umspannwerke (m/w/d) TenneT TSO GmbH
Raum Südbayern (Oberpfalz, Niederbayern, Oberbayern) Zum Job 
VCDB VerkehrsConsult Dresden-Berlin GmbH-Firmenlogo
Projektingenieur Elektromobilität Bus (m/w/d) VCDB VerkehrsConsult Dresden-Berlin GmbH
Dresden Zum Job 
Verkehrsbetriebe Karlsruhe (VBK)-Firmenlogo
Abteilungsleitung ECM 4 "Instandhaltungserbringung" (m/w/d) Verkehrsbetriebe Karlsruhe (VBK)
Karlsruhe Zum Job 
Draheim Ingenieure-Firmenlogo
Elektroplaner*in (m/w/d) Draheim Ingenieure
Hamburg, Hamm, Aachen Zum Job 
Universität zu Köln-Firmenlogo
Projektingenieur*in (TGA) im Bereich Elektrotechnik Universität zu Köln
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur als Projektleitung (w/m/d) Großprojekte Die Autobahn GmbH des Bundes
Frankfurt am Main Zum Job 
ESFORIN SE-Firmenlogo
Mitarbeiter*in Marktkommunikation & Prozesse (m/w/d) ESFORIN SE
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 

Alternative zur Quantencomputing-Technologie

Die entwickelte Technologie könnte eine energieeffiziente Alternative zu Quantencomputern darstellen. Während Quantenrechner extrem niedrige Temperaturen benötigen und hohe Energiekosten verursachen, arbeiten die neuen Ising-Maschinen bei Raumtemperatur. Sie eignen sich besonders zur Lösung kombinatorischer Optimierungsprobleme – etwa in der künstlichen Intelligenz oder der Finanzanalyse.

Anders als klassische Computer, die schrittweise rechnen, arbeiten Ising-Maschinen mit vielen parallelen Rechenoperationen. Die Interaktion der Oszillatoren ermöglicht es, die beste Lösung für eine Aufgabe zu finden, statt eine exakte Berechnung durchzuführen. Dies macht die Technologie besonders für Anwendungen interessant, die schnelle und näherungsweise Lösungen erfordern.

Netzwerke von Oszillatoren

Akash Kumar, Hauptautor der Studie, betont: „Mit Hilfe von Spinwellen sind wir der Entwicklung hocheffizienter, stromsparender Computersysteme, die reale Probleme lösen können, näher gekommen.“ Das Forschungsteam plant, Netzwerke mit Tausenden von Oszillatoren aufzubauen, um die Rechenleistung weiter zu steigern. Da die Oszillatoren nur wenige Nanometer groß sind, lassen sich die Systeme sowohl in große Rechenzentren als auch in kompakte Endgeräte integrieren.

Diese neue Technologie könnte zahlreiche Branchen beeinflussen: von künstlicher Intelligenz und maschinellem Lernen bis hin zur Telekommunikation und Finanzbranche. Laut Kumar könnte die Fähigkeit, Spinwellen auf Nanoebene zu manipulieren, auch leistungsfähigere Sensoren und Handelsalgorithmen ermöglichen.

Was ist eine Ising-Maschine?

Eine Ising-Maschine basiert auf einem physikalischen Modell, das die Wechselwirkungen zwischen magnetischen Spins beschreibt. Spins können dabei zwei Zustände annehmen („oben“ oder „unten“), wobei sie sich gegenseitig beeinflussen. In einer Ising-Maschine werden diese Wechselwirkungen genutzt, um optimale Lösungen für komplexe Probleme zu finden.

Statt einer schrittweisen Berechnung, wie bei klassischen Computern, organisieren sich die Spins so, dass sie eine energetisch günstige Konfiguration erreichen. Besonders kombinatorische Probleme, wie Routenplanung oder Netzwerkoptimierung, profitieren von dieser Methode. Die Kopplungsstärken zwischen den Spins werden so eingestellt, dass die optimale Lösung dem stabilsten Zustand entspricht.

Ising-Modell bereits 1924 entwickelt

Das Ising-Modell wurde bereits 1924 von Ernst Ising entwickelt, um das Verhalten magnetischer Systeme zu beschreiben. Heute zeigt sich, dass diese Theorie eine unerwartete Anwendung in der Informatik findet. Während klassische Ising-Computer oft supraleitende Bauteile nutzten, arbeiten die neuen Maschinen mit Spinwellen und lassen sich so einfacher skalieren.

Die bisherigen Versuche, Ising-Maschinen zu realisieren, hatten oft mit Einschränkungen zu kämpfen. So konnten frühere Konzepte nur direkte Nachbarn koppeln, was die Skalierbarkeit begrenzte. Die neue Methode der Universität Göteborg nutzt jedoch Magnetwellen, um Informationen über längere Distanzen effizient zu übertragen.

Hier geht es zur Originalpublikation

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.