MIT meldet Durchbruch 30.04.2025, 11:00 Uhr

Macht schnelle Licht-Materie-Kopplung Quantencomputern Beine?

MIT-Forschende zeigen stärkste Licht-Materie-Kopplung – ein Schritt zu schnellen, fehlertoleranten Quantencomputern.

Quantencomputer

MIT-Forschende haben einen Durchbruch auf dem Weg zum praxistauglichen Quantencomputer erreicht.

Foto: PantherMedia / Funtap

Quantencomputer versprechen, bestimmte Aufgaben schneller zu lösen als klassische Rechner. Dazu zählen die Entwicklung neuer Materialien, die Optimierung komplexer Prozesse oder maschinelles Lernen. Doch bis diese Systeme in der Praxis genutzt werden können, gibt es noch Hürden – insbesondere bei Geschwindigkeit und Fehlertoleranz.

Ein Forschungsteam des Massachusetts Institute of Technology (MIT) hat nun nach eigenen Angaben eine technische Lösung vorgestellt, die diese Hürden ein Stück weit abbauen könnte. Die Gruppe demonstrierte die bislang stärkste nichtlineare Kopplung zwischen Lichtteilchen (Photonen) und künstlichen Atomen, wie sie in supraleitenden Quantenchips verwendet werden.

Warum starke Kopplungen so wichtig sind

In einem Quantencomputer laufen viele Operationen gleichzeitig ab. Die sogenannten Qubits speichern Informationen nicht nur in den Zuständen 0 und 1, sondern auch in Zwischenzuständen. Damit Berechnungen korrekt ablaufen, müssen die Zustände der Qubits jedoch regelmäßig überprüft und bei Bedarf korrigiert werden. Dazu dient die Auslesung – sie bestimmt, in welchem Zustand sich ein Qubit befindet.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Unfallkasse Mecklenburg-Vorpommern-Firmenlogo
Ingenieur / Naturwissenschaftler (m/w/d) für Berufskrankheiten-Ermittlung Unfallkasse Mecklenburg-Vorpommern
Schwerin Zum Job 
ONTRAS Gastransport GmbH-Firmenlogo
Projektmanager für Wasserstoff (m/w/d) ONTRAS Gastransport GmbH
Leipzig Zum Job 
ROBEL Bahnbaumaschinen GmbH-Firmenlogo
Referent Zulassung (m/w/d) ROBEL Bahnbaumaschinen GmbH
Freilassing Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) in der Terminplanung für Großprojekte im Anlagenbau THOST Projektmanagement GmbH
Nürnberg, Berlin, Leipzig, Hamburg, Pforzheim Zum Job 
3M Deutschland GmbH-Firmenlogo
Senior Research Product Development Engineer (R&D) - Electrical Markets (m/f/*) 3M Deutschland GmbH
Schleifring GmbH-Firmenlogo
Konstruktionsingenieur mit Projektverantwortung (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
IMS Röntgensysteme GmbH-Firmenlogo
Entwicklungsingenieur (m/w/i) für digitale Inspektionssysteme IMS Röntgensysteme GmbH
Heiligenhaus Zum Job 
AbbVie Deutschland GmbH & Co. KG-Firmenlogo
Senior Project Engineer - Facility Automation (all genders) AbbVie Deutschland GmbH & Co. KG
Ludwigshafen am Rhein Zum Job 
Stadtwerke Augsburg Holding GmbH-Firmenlogo
Planer*in (m/w/d) für die technische Gebäudeausrüstung - Elektrotechnik Stadtwerke Augsburg Holding GmbH
Augsburg Zum Job 
OST  Ostschweizer Fachhochschule-Firmenlogo
Professor/in für Integrierte Digitale Systeme OST Ostschweizer Fachhochschule
Rapperswil (Schweiz) Zum Job 
Sentronics Metrology (a Nova Company)-Firmenlogo
Service Engineer Commissioning Metrology (m/w/d) Sentronics Metrology (a Nova Company)
Mannheim Zum Job 
Sentronics Metrology (a Nova Company)-Firmenlogo
Teamleiter (m/w/d) Integration & Commissioning Automation Sentronics Metrology (a Nova Company)
Mannheim Zum Job 
Sentronics Metrology (a Nova Company)-Firmenlogo
Elektriker / Industriemechaniker (m/w/d) für optische Messsysteme Sentronics Metrology (a Nova Company)
Mannheim Zum Job 
DB InfraGO-Firmenlogo
Senior Projektingenieur:in Leit- und Sicherungstechnik (w/m/d) DB InfraGO
Frankfurt am Main Zum Job 
DB InfraGO AG / DB Engineering & Consulting GmbH-Firmenlogo
(Senior) Planungsingenieur:in (w/m/d) DB InfraGO AG / DB Engineering & Consulting GmbH
Saarbrücken, Frankfurt am Main, Mainz Zum Job 
io-Firmenlogo
Senior Planungsingenieur/ Fachplaner Elektrotechnik (w/m/d) io
Heidelberg, Kaiserslautern Zum Job 
TÜV Hessen-Firmenlogo
Sachverständige/-r (m/w/d) Elektrotechnik TÜV Hessen
keine Angabe Zum Job 
TÜV Hessen-Firmenlogo
Sachverständige/-r (m/w/d) für EMV und EMF TÜV Hessen
keine Angabe Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
SCI-Selection - A Division of Stanton Chase Bad Homburg GmbH-Firmenlogo
Entwicklungsingenieur elektrische Antriebe (m/w/d) SCI-Selection - A Division of Stanton Chase Bad Homburg GmbH
Mannheim Zum Job 

Diese Auslesung funktioniert über Mikrowellenlicht. Je nachdem, in welchem Zustand sich das Qubit befindet, verändert sich die Frequenz des reflektierten Signals. Die Genauigkeit dieses Vorgangs hängt maßgeblich davon ab, wie stark das Qubit mit dem Licht gekoppelt ist.

Yufeng „Bright“ Ye, der Hauptautor der Studie, erklärt dazu: „Dies würde einen der Engpässe in der Quanteninformatik beseitigen. Normalerweise muss man die Ergebnisse der Berechnungen zwischen den Fehlerkorrekturrunden messen. Dies könnte den Weg zur fehlertoleranten Quanteninformatik beschleunigen und uns in die Lage versetzen, Quantencomputer in der Praxis einzusetzen und ihren Nutzen zu realisieren.“

Der Quarton-Koppler als Schlüsselkomponente

Die jetzt vorgestellte Technologie basiert auf einer neuen Schaltungsarchitektur, die Ye im Rahmen seiner Doktorarbeit entwickelt hat. Zentrales Bauteil ist ein sogenannter Quarton-Koppler – ein supraleitender Schaltkreis, der eine besonders starke nichtlineare Wechselwirkung erzeugt. Diese ist entscheidend für viele Anwendungen in der Quanteninformatik.

Im Gegensatz zu linearen Systemen, bei denen Reaktionen vorhersehbar und additiv verlaufen, zeigen nichtlineare Systeme komplexeres Verhalten. Gerade diese Eigenschaft ermöglicht es, dass Qubits stark miteinander interagieren – eine Voraussetzung für viele Quantenalgorithmen.

„Die meisten nützlichen Wechselwirkungen in der Quanteninformatik entstehen durch nichtlineare Kopplung von Licht und Materie. Wenn man einen vielseitigeren Bereich verschiedener Kopplungstypen erhält und die Kopplungsstärke erhöht, kann man im Wesentlichen die Verarbeitungsgeschwindigkeit des Quantencomputers steigern“, so Ye.

Architektur für ultraschnelle Auslesung

Im Experiment kombinierten die Forschenden zwei supraleitende Qubits auf einem Chip mit dem Quarton-Koppler. Dabei nutzten sie eines der Qubits als Resonator – es reflektiert die Mikrowellenstrahlung – und das andere als künstliches Atom zur Informationsspeicherung. Die übertragene Quanteninformation lässt sich so schnell und präzise auslesen.

Die erzielte Kopplungsstärke lag etwa zehnmal höher als bei bisherigen Systemen. Damit ließen sich Quantenoperationen und Auslesungen in wenigen Nanosekunden durchführen. Genau das ist nötig, um innerhalb der begrenzten Lebensdauer der Qubits – der sogenannten Kohärenzzeit – möglichst viele Rechenoperationen und Korrekturschritte zu schaffen.

Noch Grundlagenforschung – aber viel Potenzial

Auch wenn das Experiment ein wichtiger Meilenstein ist, betonen die Forschenden, dass es sich um eine physikalische Demonstration handelt. Der Aufbau muss noch erweitert und mit weiteren Bauteilen wie Filtern ausgestattet werden, um in größeren Quantensystemen eingesetzt zu werden.

„Diese Arbeit ist noch nicht das Ende der Geschichte. Es handelt sich um eine grundlegende physikalische Demonstration, aber die Gruppe arbeitet derzeit daran, eine wirklich schnelle Auslesung zu realisieren“, sagt Kevin O’Brien, Mitverfasser der Studie und Leiter der Quantum Coherent Electronics Group am MIT.

Neben der Licht-Materie-Kopplung untersuchten die Forschenden auch eine besonders starke Materie-Materie-Kopplung – eine direkte Wechselwirkung zwischen zwei Qubits. Diese ist für logische Operationen innerhalb des Quantencomputers ebenso relevant und soll in künftigen Arbeiten weiterentwickelt werden.

Was das für die Zukunft bedeutet

Die Lebensdauer von Qubits ist begrenzt. Deshalb ist es entscheidend, dass möglichst viele Rechenschritte und Fehlerkorrekturen in kurzer Zeit erfolgen können. Stärkere Kopplungen und schnellere Auslesungen sind dafür ein zentraler Baustein.

Langfristig könnte die Technologie dazu beitragen, einen fehlertoleranten Quantencomputer zu bauen. Erst mit solch einem System lassen sich reale Anwendungen in Bereichen wie Kryptografie, Materialentwicklung oder medizinischer Forschung umsetzen.

Die Ergebnisse der Studie wurden in der Fachzeitschrift Nature Communications veröffentlicht. Neben den Forschenden des MIT waren auch Wissenschaftlerinnen und Wissenschaftler des MIT Lincoln Laboratory und der Harvard University beteiligt.

Hier geht es zur Originalpublikation

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.