Optik 01.12.2022, 07:00 Uhr

Neue Technologie steuert Licht in Rekordgeschwindigkeit

Schnellere LiDAR-Sensoren, bessere Methoden der medizinischen Bildgebung oder raschere Datenübertragung: Eine neue Technologie aus den USA soll gleich mehrere Anwendungen revolutionieren. Was steckt dahinter?

Hologramm

Freistehende 3D-Hologramme erzeugen: US-Ingenieurinnen und -Ingenieure sind dem Ziel einen großen Schritt nähergekommen.

Foto: Sampson Wilcox/MIT

In „Star Wars: Episode IV – Eine neue Hoffnung“ bat Prinzessin Leia über ein projiziertes 3D-Hologramm um Hilfe, zumindest in der Fiktion. Selbst 45 Jahre nach Erscheinen des Films fehlen Technologien, um realistische und dynamische Hologramme zu erstellen – etwa im Medienbereich oder in der Medizin, um Daten auszuwerten und zu veranschaulichen.

Doch wo liegt das Problem? Um ein freistehendes 3D-Hologramm zu erzeugen, bräuchten Ingenieurinnen und Ingenieure eine extrem präzise und schnelle Steuerung des Lichts. Bekannte Systeme, die auf Flüssigkristallen oder Mikrospiegeln basieren, sind dazu nicht in der Lage. Doch eine neue, am Massachusetts Institute of Technology (MIT) in Cambridge entwickelte Technologie könnte das scheinbar Unmögliche real werden lassen. Forschende haben einen programmierbaren, drahtlosen, räumlichen Modulator entwickelt, der Licht mit einer um Größenordnungen schnelleren Reaktion als bisherige Geräte manipulieren kann. Sie leisteten auch Pionierarbeit bei einem Herstellungsverfahren, um sicherzustellen, dass die Qualität des Geräts nahezu perfekt bleibt, wenn es in großem Maßstab hergestellt wird.

3D-Druck vor dem Durchbruch zur Serientauglichkeit?

Lange Vorarbeiten bis zur ultraschnellen Steuerung von Licht

Die Hürden bis zum Erfolg waren hoch. Seit mehr als vier Jahren befasst sich eine internationale MIT-Forschergruppe mit Problemen der optischen Hochgeschwindigkeits-Strahlformung. Ursprünglich wollten die Forscherinnen und Forscher Technologien verwenden, mit denen integrierte Schaltkreise für Computer erstellt werden, damit ihr neues Gerät später als Massenproduktion hergestellt werden kann. Aber mikroskopische Abweichungen treten in jedem Herstellungsprozess auf, und bei mikrometergroßen Hohlräumen auf dem Chip können diese winzigen Unterschiede zu enormen Leistungsschwankungen führen. Der Plan war gescheitert.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Unfallkasse Mecklenburg-Vorpommern-Firmenlogo
Ingenieur / Naturwissenschaftler (m/w/d) für Berufskrankheiten-Ermittlung Unfallkasse Mecklenburg-Vorpommern
Schwerin Zum Job 
ONTRAS Gastransport GmbH-Firmenlogo
Projektmanager für Wasserstoff (m/w/d) ONTRAS Gastransport GmbH
Leipzig Zum Job 
ROBEL Bahnbaumaschinen GmbH-Firmenlogo
Referent Zulassung (m/w/d) ROBEL Bahnbaumaschinen GmbH
Freilassing Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) in der Terminplanung für Großprojekte im Anlagenbau THOST Projektmanagement GmbH
Nürnberg, Berlin, Leipzig, Hamburg, Pforzheim Zum Job 
3M Deutschland GmbH-Firmenlogo
Senior Research Product Development Engineer (R&D) - Electrical Markets (m/f/*) 3M Deutschland GmbH
Schleifring GmbH-Firmenlogo
Konstruktionsingenieur mit Projektverantwortung (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
IMS Röntgensysteme GmbH-Firmenlogo
Entwicklungsingenieur (m/w/i) für digitale Inspektionssysteme IMS Röntgensysteme GmbH
Heiligenhaus Zum Job 
AbbVie Deutschland GmbH & Co. KG-Firmenlogo
Senior Project Engineer - Facility Automation (all genders) AbbVie Deutschland GmbH & Co. KG
Ludwigshafen am Rhein Zum Job 
Stadtwerke Augsburg Holding GmbH-Firmenlogo
Planer*in (m/w/d) für die technische Gebäudeausrüstung - Elektrotechnik Stadtwerke Augsburg Holding GmbH
Augsburg Zum Job 
OST  Ostschweizer Fachhochschule-Firmenlogo
Professor/in für Integrierte Digitale Systeme OST Ostschweizer Fachhochschule
Rapperswil (Schweiz) Zum Job 
Sentronics Metrology (a Nova Company)-Firmenlogo
Service Engineer Commissioning Metrology (m/w/d) Sentronics Metrology (a Nova Company)
Mannheim Zum Job 
Sentronics Metrology (a Nova Company)-Firmenlogo
Teamleiter (m/w/d) Integration & Commissioning Automation Sentronics Metrology (a Nova Company)
Mannheim Zum Job 
Sentronics Metrology (a Nova Company)-Firmenlogo
Elektriker / Industriemechaniker (m/w/d) für optische Messsysteme Sentronics Metrology (a Nova Company)
Mannheim Zum Job 
DB InfraGO-Firmenlogo
Senior Projektingenieur:in Leit- und Sicherungstechnik (w/m/d) DB InfraGO
Frankfurt am Main Zum Job 
DB InfraGO AG / DB Engineering & Consulting GmbH-Firmenlogo
(Senior) Planungsingenieur:in (w/m/d) DB InfraGO AG / DB Engineering & Consulting GmbH
Saarbrücken, Frankfurt am Main, Mainz Zum Job 
io-Firmenlogo
Senior Planungsingenieur/ Fachplaner Elektrotechnik (w/m/d) io
Heidelberg, Kaiserslautern Zum Job 
TÜV Hessen-Firmenlogo
Sachverständige/-r (m/w/d) Elektrotechnik TÜV Hessen
keine Angabe Zum Job 
TÜV Hessen-Firmenlogo
Sachverständige/-r (m/w/d) für EMV und EMF TÜV Hessen
keine Angabe Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
SCI-Selection - A Division of Stanton Chase Bad Homburg GmbH-Firmenlogo
Entwicklungsingenieur elektrische Antriebe (m/w/d) SCI-Selection - A Division of Stanton Chase Bad Homburg GmbH
Mannheim Zum Job 

Eine andere Strategie brachte schließlich Erfolg. Die Forschenden entwickelten einen räumlichen Lichtmodulator (spatial light modulator, kurz SLM). Hier handelt es sich um ein Gerät, das Licht durch Steuerung seiner Emissionseigenschaften manipuliert: Ähnlich wie ein Overhead-Projektor oder ein Computerbildschirm wandelt ein SLM Lichtstrahlen um, fokussiert sie in eine Richtung oder bricht sie an vielen Stellen, um ein Bild zu erzeugen.

Im Inneren des SLM steuert eine zweidimensionale Anordnung von optischen Modulatoren das Licht. Die Wellenlänge dieser Strahlung beträgt jedoch nur einige hundert Nanometer. Um das Licht bei hohen Geschwindigkeiten präzise zu steuern, benötigt das Gerät daher eine extrem dichte Anordnung von Steuermodulen im Nanometer-Maßstab. Um dieses Ziel zu erreichen, verwendeten die Wissenschaftlerinnen und Wissenschaftler Mikrokavitäten aus photonischen Kristallen: transparente Festkörper mit periodischen Strukturen durch Unterschiede im Brechungsindex. Sie ermöglichen die kontrollierte Speicherung, Manipulation und Emission von Licht auf der Wellenlängenskala.

Wenn Licht in einen Hohlraum im Kristall eintritt, wird es etwa eine Nanosekunde lang angehalten, wobei es mehr als 100.000-mal reflektiert wird, bevor es den Festkörper verlässt. Diese Zeit reicht aus, um das Licht präzise zu manipulieren. Indem sie das Reflexionsvermögen eines Hohlraums variieren, können die Wissenschaftlerinnen und Wissenschaftler steuern, welche Wege das Licht zurücklegt.

Das Team verwendete ein Mikro-LED-Display zur Steuerung des SLM. Die LED-Pixel richten sich mit den photonischen Kristallen auf dem Siliziumchip aus, sodass beim Einschalten einer LED ein einzelner Mikrohohlraum entsteht. Wenn ein Laser auf diese aktivierte Mikrokavität trifft, reagieren die Miniatur-Hohlräume unterschiedlich, je nach Licht der LED. Im Labor zeigte sich eine nahezu perfekte Kontrolle – sowohl räumlich als auch zeitlich – eines optischen Felds.

Wie funktioniert „Sandstrahlen“ mit Licht?

Vielfältige Anwendungen der Steuerung von Licht in der Praxis. 

Die MIT-Arbeitsgruppe hat große Pläne. Ihr neuer Lichtmodulator könnte zur Entwicklung superschneller LiDAR-Sensoren (Light Detection and Ranging) für selbstfahrende Autos verwendet werden, die Situationen im Straßenverkehr etwa eine Million Mal schneller abbilden könnten als bekannte mechanische Systeme. Er könnte auch Gehirnscanner beschleunigen, die mit Hilfe von Licht durch biologische Strukturen „sehen“. Indem sie Gewebe schneller abbilden können, könnten die Scanner Bilder mit höherer Auflösung erzeugen, die nicht durch das Rauschen dynamischer Schwankungen in lebendem Gewebe durch fließendes Blut beeinträchtigt werden. Denkbar wäre auch, die Technologie zu nutzen, um große Mengen an Daten extrem schnell zu übertragen. Im nächsten Schritt wollen die Forschenden größere Geräte für mögliche Anwendungen der Steuerung von Licht herstellen.

Mehr zum Thema Optik:

  • Neue Laser für verschiedene Anwendungen
  • Prozessstabiles Laserauftragschweißen mit Kohärenztomografie

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.