Thermophotovoltaik 12.09.2023, 11:30 Uhr

Iridium-Emitter: Die Antwort auf die Herausforderungen der Thermophotovoltaik

Gemeinsam mit der Technischen Universität Hamburg und der Universität Aalborg haben Forschende des Helmholtz-Zentrums Hereon einen neuen Emitter aus dem widerstandsfähigen Metall Iridium entwickelt.

Iridium

Iridium-Emitter: Die Antwort auf die Herausforderungen der Thermophotovoltaik?

Foto: PantherMedia / 7enotov

Das Prinzip der Thermophotovoltaik besteht darin, Wärme in elektrischen Strom umzuwandeln. Um die Strahlungsenergie effizient aus der Wärmequelle zu gewinnen, werden sogenannte selektive Emitter eingesetzt. Diese befinden sich zwischen der Wärmequelle und der Photovoltaikzelle und geben lediglich einen spezifischen Teil der Strahlung ab, während sie den Rest unterdrücken. Eine bedeutende Herausforderung besteht darin, dass die Umwandlung von Wärme in Strom bei extremen Temperaturen von etwa 1000°C stattfindet. Der Emitter muss daher in der Lage sein, diesen Temperaturen standzuhalten, ohne seine Fähigkeit zur selektiven Strahlungsemission zu beeinträchtigen. In Zusammenarbeit mit der Technischen Universität Hamburg (TUHH) und der Universität Aalborg ist es den Forschenden des Helmholtz-Zentrums Hereon nun erfolgreich gelungen, einen neuen Emitter aus dem widerstandsfähigen Metall Iridium zu entwickeln, der diesen anspruchsvollen Bedingungen gewachsen ist, ohne seine Effizienz einzubüßen.

Welche Eigenschaften hat Iridium?

Iridium ist ein äußerst seltenes chemisches Element, das im Periodensystem der Elemente die Ordnungszahl 77 trägt und mit dem Symbol „Ir“ gekennzeichnet ist. Es gehört zu den Platinmetallen und kommt nur in geringen Mengen auf der Erde vor. Oft wird es zusammen mit anderen Edelmetallen wie Platin und Palladium in Mineralvorkommen gefunden.

Eine bemerkenswerte Eigenschaft von Iridium ist seine außerordentlich hohe Dichte, wobei es nach Osmium das zweitdichteste Element ist. Diese Dichte macht Iridium in verschiedenen Anwendungen äußerst nützlich.

Eines der herausragenden Merkmale von Iridium ist seine bemerkenswerte Korrosionsbeständigkeit, die es in extremen Umgebungen und bei hohen Temperaturen stabil hält. Die Schmelztemperatur von Iridium liegt bei etwa 2.447 Grad Celsius, und seine Siedetemperatur beträgt rund 4.527 Grad Celsius.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
noris network AG-Firmenlogo
Ingenieur (m/w/d) für Versorgungstechnik - Rechenzentrumsbau noris network AG
Nürnberg Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in / Projektmanager*in (m/w/d) in der Steuerung von Großprojekten im Bereich Energiewende THOST Projektmanagement GmbH
European Energy A/S-Firmenlogo
Grid Connection Specialist - Wind / PV (m/w/d) European Energy A/S
Markkleeberg bei Leipzig Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur für Straßenplanung und -entwurf / Immissionsschutz (m/w/d) Die Autobahn GmbH des Bundes
Regensburg Zum Job 
Stadtwerke Essen AG-Firmenlogo
Ingenieur / Techniker (gn) für Kanal- und Entwässerungsplanung Stadtwerke Essen AG
Berliner Stadtreinigung (BSR)-Firmenlogo
Betriebsleiter:in Biogasanlage (w/m/d) Berliner Stadtreinigung (BSR)
Berlin-Ruhleben Zum Job 
swa Netze GmbH-Firmenlogo
Elektroingenieur (m/w/d) Einspeiseanlagen mit Führungsperspektive swa Netze GmbH
Augsburg Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Ingenieur (m/w/d) Stoffstrom- und Abfallmanagement für die Außenstelle München-Maisach Die Autobahn GmbH des Bundes, Niederlassung Südbayern
München-Maisach Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Sachbearbeiter Wassertechnik - Gewässerschutzbeauftragter (m/w/d) in der Außenstelle Maisach Die Autobahn GmbH des Bundes, Niederlassung Südbayern
Maisach Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Umweltingenieur / Umwelttechniker als Ingenieur Abfallmanagement im Betrieb für die Außenstelle München-Maisach (m/w/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
Maisach Zum Job 
Rolls-Royce-Firmenlogo
Projektingenieur (m/w/d) Elektrotechnik Rolls-Royce
Friedrichshafen Zum Job 
Daldrop + Dr.Ing.Huber GmbH + Co. KG-Firmenlogo
Projektleiter TGA (m/w/d) Reinraumtechnik Daldrop + Dr.Ing.Huber GmbH + Co. KG
Neckartailfingen Zum Job 
Stadtwerke Potsdam GmbH-Firmenlogo
Experte (m/w/d) Energieinfrastruktur und Bauprojekte - Planung und Realisierung - Stadtwerke Potsdam GmbH
Potsdam Zum Job 
VSE Verteilnetz GmbH-Firmenlogo
Technischer Sachbearbeiter Sekundärtechnik-Ausführung Schutz- und Leittechnik (m/w/d) VSE Verteilnetz GmbH
Saarwellingen Zum Job 
Netz Leipzig GmbH-Firmenlogo
Teamleitung (m/w/d) Leitstelle Strom Netz Leipzig GmbH
Leipzig Zum Job 
Landesbetrieb Straßenwesen Brandenburg-Firmenlogo
Ingenieur / Ingenieurin (m/w/d) als Dezernatsleitung Planung West Landesbetrieb Straßenwesen Brandenburg
Potsdam Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Diplom (FH) (w/m/d) Bau-, Chemie-, Umweltingenieurwesen, Verfahrenstechnik Regierungspräsidium Freiburg
Freiburg Zum Job 
Gemeinde Steinen-Firmenlogo
Leiter/in des Fachbereichs Bauen und Umwelt (w/m/d) Gemeinde Steinen
Steinen Zum Job 
Staatliches Hochbauamt Stuttgart-Firmenlogo
Ingenieur der Fachrichtung Landschaftsplanung / Landschaftsarchitektur / Umweltplanung (w/m/d) Staatliches Hochbauamt Stuttgart
Stuttgart, Stetten am kalten Markt Zum Job 
BG ETEM-Firmenlogo
Ingenieur/-in (m/w/d) für den Außendienst als Aufsichtsperson BG ETEM
Region Hannover-Braunschweig-Göttingen Zum Job 

Aufgrund seiner einzigartigen Eigenschaften findet Iridium in verschiedenen Bereichen Anwendung. Es wird in der Elektronikindustrie, in Hochtemperaturlegierungen, in der Raumfahrttechnik (beispielsweise in Raketen und Raumfahrzeugen) und in der Chemieindustrie eingesetzt. Zudem wird Iridium in der Schmuckherstellung verwendet, oft in Kombination mit Platin, da es aufgrund seiner Beständigkeit und Schönheit geschätzt wird.

Warum ein Emitter aus Iridium entscheidend ist

In der Thermophotovoltaik, genauso wie in der herkömmlichen Photovoltaik, erfolgt die Umwandlung von Strahlungsenergie in elektrischen Strom. Der entscheidende Unterschied besteht jedoch darin, dass in der Thermophotovoltaik die Strahlungsenergie nicht von der Sonne stammt, sondern von einer Wärmequelle, wie sie beispielsweise in der Stahlindustrie verwendet wird. Zwischen dieser Wärmequelle und der Solarzelle befindet sich ein Bauteil namens Emitter. Dieser Emitter besteht aus mehreren sehr dünnen Schichten, die aus abwechselnden Materialien wie Metall und Oxid bestehen. Es ist wichtig, dass diese Schichten bei hohen Temperaturen ihre Eigenschaften beibehalten, um die Umwandlung von Wärme in Strom zu ermöglichen. Idealerweise gibt der Emitter nur kurzwellige Photonen ab und unterdrückt langwellige Strahlung. Dies ist von großer Bedeutung, da die photovoltaische Zelle nicht in der Lage ist, langwellige Strahlung in elektrischen Strom umzuwandeln.

Bei erhöhten Temperaturen neigen die meisten Metalle zur Oxidation, was zu einer Beeinträchtigung der Funktion des Emitters führt. Die Forscher konnten jedoch nachweisen, dass der neu entwickelte selektive Emitter aus Iridium und Hafniumoxid seine Funktionalität über einen Zeitraum von 100 Stunden bei 1000 °C vollständig beibehält. Das Metall widersteht somit den anspruchsvollen Bedingungen ohne jegliche Beeinträchtigung, wie durch Röntgenuntersuchungen bestätigt wurde. Die erfolgreiche Entwicklung selektiver Emitter auf der Basis von Iridium stellt einen bedeutenden Fortschritt auf dem Weg zur Weiterentwicklung der Thermophotovoltaik dar.

„Mit Iridium gehen wir beide Aspekte gleichzeitig an: die Selektivität und die Temperaturstabilität“, wird Alexander Petrov, der sich an der TUHH mit optischen Eigenschaften von Materialien beschäftigt, in einer Pressemitteilung zitiert. „Selektive Emitter auf Iridium-Basis sind sehr gut in der Lage, unerwünschte Strahlung zu unterdrücken und reagieren nicht mit Sauerstoff. Iridium ist ein Edelmetall wie Gold, aber geeignet für Hochtemperaturanwendungen“, erklärt er weiter.

Potenzial für effizientere und nachhaltigere Systeme erschlossen

„Indem wir die nachteiligen Auswirkungen der Oxidation vermeiden, haben wir das Potenzial für effizientere und nachhaltigere Systeme erschlossen“, berichtet Gnanavel Vaidhyanathan Krishnamurthy, Erstautor der Studie und Wissenschaftler am Helmholtz-Zentrum Hereon. „Diese Innovation öffnet die Türen zu neuen Möglichkeiten bei der Abwärmerückgewinnung, der solarthermischen Stromerzeugung und darüber hinaus.“
In der Umstellung auf erneuerbare Energien ist die Sicherstellung einer kontinuierlichen Stromversorgung von entscheidender Bedeutung. Die Thermophotovoltaik hat das Potenzial, nicht nur Strom aus industrieller Abwärme zu erzeugen, sondern auch einen bedeutenden Beitrag zur Umstellung der Energieversorgung auf erneuerbare Energien zu leisten. In diesem Zusammenhang wird die natürlicherweise zeitlich schwankend erzeugte Energie aus Photovoltaik- und Windkraftanlagen in Wärmespeichern zwischengespeichert. Später, wenn die Sonne nicht scheint oder der Wind nicht weht, kann diese Energie durch die Anwendung der Thermophotovoltaik kontinuierlich in elektrische Energie umgewandelt werden, wodurch die Stabilität der Energienetze gewährleistet wird.

Ein Beitrag von:

  • Alexandra Ilina

    Alexandra Ilina ist Diplom-Journalistin (TU-Dortmund) und Diplom-Übersetzerin (SHU Smolensk) mit mehr als 20 Jahren Berufserfahrung im Journalismus, in der Kommunikation und im digitalen Content-Management. Sie schreibt über Karriere und Technik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.