Thermophotovoltaik 12.09.2023, 11:30 Uhr

Iridium-Emitter: Die Antwort auf die Herausforderungen der Thermophotovoltaik

Gemeinsam mit der Technischen Universität Hamburg und der Universität Aalborg haben Forschende des Helmholtz-Zentrums Hereon einen neuen Emitter aus dem widerstandsfähigen Metall Iridium entwickelt.

Iridium

Iridium-Emitter: Die Antwort auf die Herausforderungen der Thermophotovoltaik?

Foto: PantherMedia / 7enotov

Das Prinzip der Thermophotovoltaik besteht darin, Wärme in elektrischen Strom umzuwandeln. Um die Strahlungsenergie effizient aus der Wärmequelle zu gewinnen, werden sogenannte selektive Emitter eingesetzt. Diese befinden sich zwischen der Wärmequelle und der Photovoltaikzelle und geben lediglich einen spezifischen Teil der Strahlung ab, während sie den Rest unterdrücken. Eine bedeutende Herausforderung besteht darin, dass die Umwandlung von Wärme in Strom bei extremen Temperaturen von etwa 1000°C stattfindet. Der Emitter muss daher in der Lage sein, diesen Temperaturen standzuhalten, ohne seine Fähigkeit zur selektiven Strahlungsemission zu beeinträchtigen. In Zusammenarbeit mit der Technischen Universität Hamburg (TUHH) und der Universität Aalborg ist es den Forschenden des Helmholtz-Zentrums Hereon nun erfolgreich gelungen, einen neuen Emitter aus dem widerstandsfähigen Metall Iridium zu entwickeln, der diesen anspruchsvollen Bedingungen gewachsen ist, ohne seine Effizienz einzubüßen.

Welche Eigenschaften hat Iridium?

Iridium ist ein äußerst seltenes chemisches Element, das im Periodensystem der Elemente die Ordnungszahl 77 trägt und mit dem Symbol „Ir“ gekennzeichnet ist. Es gehört zu den Platinmetallen und kommt nur in geringen Mengen auf der Erde vor. Oft wird es zusammen mit anderen Edelmetallen wie Platin und Palladium in Mineralvorkommen gefunden.

Eine bemerkenswerte Eigenschaft von Iridium ist seine außerordentlich hohe Dichte, wobei es nach Osmium das zweitdichteste Element ist. Diese Dichte macht Iridium in verschiedenen Anwendungen äußerst nützlich.

Eines der herausragenden Merkmale von Iridium ist seine bemerkenswerte Korrosionsbeständigkeit, die es in extremen Umgebungen und bei hohen Temperaturen stabil hält. Die Schmelztemperatur von Iridium liegt bei etwa 2.447 Grad Celsius, und seine Siedetemperatur beträgt rund 4.527 Grad Celsius.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
THOST Projektmanagement GmbH-Firmenlogo
Projektmanager*in/ Projektmitarbeiter*in (m/w/d) Flächenmanagement THOST Projektmanagement GmbH
Dresden, Berlin, Leipzig, Hamburg Zum Job 
3M Deutschland GmbH-Firmenlogo
Senior Research Product Development Engineer (R&D) - Electrical Markets (m/f/*) 3M Deutschland GmbH
Wirtschaftsbetrieb Hagen AöR-Firmenlogo
Werkstudent*in Siedlungswasserwirtschaft (w/m/d) Wirtschaftsbetrieb Hagen AöR
Dr. Born - Dr. Ermel GmbH-Firmenlogo
Projektleiter Ingenieur Abwasserbehandlung (m/w/d) Dr. Born - Dr. Ermel GmbH
Frankfurt am Main Zum Job 
Stadtwerke Augsburg Holding GmbH-Firmenlogo
Technischer Revisor (m/w/d) Schwerpunkt Prozessprüfung im Bereich Versorgung und ÖPNV Stadtwerke Augsburg Holding GmbH
Augsburg Zum Job 
Stadtwerke Esslingen am Neckar GmbH & Co. KG-Firmenlogo
Projektingenieur Wärme- und Kältetechnische Projekte (w/m/d) Stadtwerke Esslingen am Neckar GmbH & Co. KG
Esslingen am Neckar Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) Schwerpunkt Abfall- und Bodenmanagement Die Autobahn GmbH des Bundes
Stadtwerke Essen-Firmenlogo
Ingenieur/Techniker (gn) für Kanal- und Entwässerungsplanung Stadtwerke Essen
Fachhochschule Südwestfalen-Firmenlogo
Budde-Stiftungsprofessur für Erneuerbare Energien, insbesondere Wasserstoff Fachhochschule Südwestfalen
Iserlohn Zum Job 
TransnetBW GmbH-Firmenlogo
Ingenieur (m/w/d) Leittechnik TransnetBW GmbH
Wendlingen am Neckar, Bruchsal Zum Job 
TransnetBW GmbH-Firmenlogo
Ingenieur Asset Management (m/w/d) TransnetBW GmbH
Stuttgart Zum Job 
Eproplan GmbH Beratende Ingenieure-Firmenlogo
Projektleiter*in (m/w/d) Versorgungstechnik im Bereich der technischen Gebäudeausrüstung (HLSK) Eproplan GmbH Beratende Ingenieure
Stuttgart Zum Job 
Eproplan GmbH Beratende Ingenieure-Firmenlogo
Projektleiter*in Energiekonzepte und Energieeffizienz Eproplan GmbH Beratende Ingenieure
Stuttgart Zum Job 
Eproplan GmbH Beratende Ingenieure-Firmenlogo
Projektleiter*in Elektrotechnik (m/w/d) Schwerpunkt Elektro- und Leittechnik Eproplan GmbH Beratende Ingenieure
Stuttgart Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) im Projektmanagement Bereich Energietechnik / Elektrotechnik THOST Projektmanagement GmbH
Göttingen, Bremen, Lübeck, Kiel, Leipzig, Hamburg, Heide, Pforzheim Zum Job 
Wirtschaftsbetrieb Hagen AöR-Firmenlogo
Bauingenieur*in Siedlungswasserwirtschaft - Grundstücksentwässerung (w/m/d) Wirtschaftsbetrieb Hagen AöR
FERCHAU GmbH-Firmenlogo
Projektingenieur Verfahrenstechnik / Anlagenbau (m/w/d) FERCHAU GmbH
Dortmund Zum Job 
TÜV NORD GROUP-Firmenlogo
Sachverständige:r im Bereich Anlagensicherheit Immissionsschutz und Störfallvorsorge TÜV NORD GROUP
Hamburg, bundesweit Zum Job 
Berliner Stadtreinigung (BSR)-Firmenlogo
Gruppenleiter:innen für Projektsteuerung und Projektleitung Anlagenbau (w/m/d) Berliner Stadtreinigung (BSR)
Stadtwerke Lübeck Gruppe-Firmenlogo
Projektleiter:in Konzeption, Planung, Bau und Einsatz Fernwärmeanlagen Stadtwerke Lübeck Gruppe
Lübeck Zum Job 

Aufgrund seiner einzigartigen Eigenschaften findet Iridium in verschiedenen Bereichen Anwendung. Es wird in der Elektronikindustrie, in Hochtemperaturlegierungen, in der Raumfahrttechnik (beispielsweise in Raketen und Raumfahrzeugen) und in der Chemieindustrie eingesetzt. Zudem wird Iridium in der Schmuckherstellung verwendet, oft in Kombination mit Platin, da es aufgrund seiner Beständigkeit und Schönheit geschätzt wird.

Warum ein Emitter aus Iridium entscheidend ist

In der Thermophotovoltaik, genauso wie in der herkömmlichen Photovoltaik, erfolgt die Umwandlung von Strahlungsenergie in elektrischen Strom. Der entscheidende Unterschied besteht jedoch darin, dass in der Thermophotovoltaik die Strahlungsenergie nicht von der Sonne stammt, sondern von einer Wärmequelle, wie sie beispielsweise in der Stahlindustrie verwendet wird. Zwischen dieser Wärmequelle und der Solarzelle befindet sich ein Bauteil namens Emitter. Dieser Emitter besteht aus mehreren sehr dünnen Schichten, die aus abwechselnden Materialien wie Metall und Oxid bestehen. Es ist wichtig, dass diese Schichten bei hohen Temperaturen ihre Eigenschaften beibehalten, um die Umwandlung von Wärme in Strom zu ermöglichen. Idealerweise gibt der Emitter nur kurzwellige Photonen ab und unterdrückt langwellige Strahlung. Dies ist von großer Bedeutung, da die photovoltaische Zelle nicht in der Lage ist, langwellige Strahlung in elektrischen Strom umzuwandeln.

Bei erhöhten Temperaturen neigen die meisten Metalle zur Oxidation, was zu einer Beeinträchtigung der Funktion des Emitters führt. Die Forscher konnten jedoch nachweisen, dass der neu entwickelte selektive Emitter aus Iridium und Hafniumoxid seine Funktionalität über einen Zeitraum von 100 Stunden bei 1000 °C vollständig beibehält. Das Metall widersteht somit den anspruchsvollen Bedingungen ohne jegliche Beeinträchtigung, wie durch Röntgenuntersuchungen bestätigt wurde. Die erfolgreiche Entwicklung selektiver Emitter auf der Basis von Iridium stellt einen bedeutenden Fortschritt auf dem Weg zur Weiterentwicklung der Thermophotovoltaik dar.

„Mit Iridium gehen wir beide Aspekte gleichzeitig an: die Selektivität und die Temperaturstabilität“, wird Alexander Petrov, der sich an der TUHH mit optischen Eigenschaften von Materialien beschäftigt, in einer Pressemitteilung zitiert. „Selektive Emitter auf Iridium-Basis sind sehr gut in der Lage, unerwünschte Strahlung zu unterdrücken und reagieren nicht mit Sauerstoff. Iridium ist ein Edelmetall wie Gold, aber geeignet für Hochtemperaturanwendungen“, erklärt er weiter.

Potenzial für effizientere und nachhaltigere Systeme erschlossen

„Indem wir die nachteiligen Auswirkungen der Oxidation vermeiden, haben wir das Potenzial für effizientere und nachhaltigere Systeme erschlossen“, berichtet Gnanavel Vaidhyanathan Krishnamurthy, Erstautor der Studie und Wissenschaftler am Helmholtz-Zentrum Hereon. „Diese Innovation öffnet die Türen zu neuen Möglichkeiten bei der Abwärmerückgewinnung, der solarthermischen Stromerzeugung und darüber hinaus.“
In der Umstellung auf erneuerbare Energien ist die Sicherstellung einer kontinuierlichen Stromversorgung von entscheidender Bedeutung. Die Thermophotovoltaik hat das Potenzial, nicht nur Strom aus industrieller Abwärme zu erzeugen, sondern auch einen bedeutenden Beitrag zur Umstellung der Energieversorgung auf erneuerbare Energien zu leisten. In diesem Zusammenhang wird die natürlicherweise zeitlich schwankend erzeugte Energie aus Photovoltaik- und Windkraftanlagen in Wärmespeichern zwischengespeichert. Später, wenn die Sonne nicht scheint oder der Wind nicht weht, kann diese Energie durch die Anwendung der Thermophotovoltaik kontinuierlich in elektrische Energie umgewandelt werden, wodurch die Stabilität der Energienetze gewährleistet wird.

Ein Beitrag von:

  • Alexandra Ilina

    Alexandra Ilina ist Diplom-Journalistin (TU-Dortmund) und Diplom-Übersetzerin (SHU Smolensk) mit mehr als 20 Jahren Berufserfahrung im Journalismus, in der Kommunikation und im digitalen Content-Management. Sie schreibt über Karriere und Technik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.