Neues Antriebskonzept 09.10.2019, 07:00 Uhr

Flexibel und effizient: Radnabenmotoren treiben Elektroautos an

Forscher der TH Köln haben eine alte Idee von Ferdinand Porsche aufgegriffen und seinen Radnabenmotor für moderne Elektroautos weiterentwickelt. Dieses System soll Kosten sparen und umweltfreundlicher sein als herkömmliche Antriebskonzepte.

Elektroauto mit Radnabenmotor

Von außen ist nicht sichtbar, dass jedes Rad von einem eigenen kleinen Motor angetrieben wird.

Foto: Costa Belibasakis/TH Köln

Zurück zu den Wurzeln – mit diesem Motto lässt sich die derzeitige Entwicklung in der Automobilbranche gut umschreiben. Schließlich hat die Geschichte des Automobils im 19. Jahrhundert mit einem Elektroauto begonnen, bevor Verbrennermotoren ihren Siegeszug antraten. Jetzt spricht alles dafür, dass Elektromobilität wieder in die erste Reihe tritt, und auch eine andere historische Erfindung erlebt eine Neuauflage: der Radnabenmotor. Ferdinand Porsche rüstete damit bereits zur Weltausstellung im Jahr 1900 Elektroautos aus. Diesem Prinzip folgen jetzt Wissenschaftler der Technischen Hochschule (TH) Köln.

Gemeinsam mit der Alten SW GmbH haben die Forscher der TH ein Elektro-Serienfahrzeug umgerüstet und den herkömmlichen Motor entfernt. Im Anschluss bauten sie Elektromotoren samt der dazugehörigen Leistungselektronik in jedes einzelne der 4 Räder ein. „Die Bundesregierung will in absehbarer Zeit eine Millionen Elektroautos auf die Straßen bringen. Dafür muss diese Fahrzeugart deutlich günstiger werden. Zudem sind ökologische Probleme durch den Einsatz Seltener Erden zu bewältigen. Beide Probleme adressiert der von uns entwickelte Antrieb“, sagt Andreas Lohner, Professor am Institut für Automatisierungstechnik der TH Köln.

Reluktanzkraft für jedes einzelne Rad

Die sogenannten Felgenmotoren haben die Wissenschaftler in den Raum zwischen Bremsanlage und Felge der Standardräder eingesetzt. Dabei besteht jeder Motor aus einem statischen Teil mit 20 Spulen und einem rotierenden Teil mit 24 Zähnen. Wird nun eine der Spulen unter Strom gesetzt, zieht sie den nächstgelegenen Zahn des Rotors an. Eine Spule nach der anderen wird aktiviert, sodass der äußere Bereich des Motors zu rotieren beginnt und die Räder antreibt. Die Bewegung erfolgt also durch die Reluktanzkraft, die den magnetischen Widerstand zwischen Spule und Rotor verkleinert. Faktisch handelt es sich daher um ein Allrad-Fahrzeug.

Die Reluktanzkraft ist wohlbekannt. Für die Forscher bestand die größte Herausforderung jedoch darin, die Motoren so zu gestalten, dass sie nicht an jeden Bauraum individuell angepasst werden müssen. Ihre Form ist neutral. Gleichzeitig musste es möglich sein, sie problemlos in die bestehenden Räder zu integrieren. Das schafft die Voraussetzung für die Serienumsetzung bei verschiedenen Fahrzeugmodellen. Hinzu kommt die sogenannte Skateboard-Konfiguration: Die 4 motorisierten Räder werden durch einen Akku im Unterboden ergänzt. Daher lasse sich das Antriebskonzept auf nahezu jede Karosserieform übertragen.

Günstiger als normale E-Autos

Jetzt stellt sich natürlich noch die Frage, welche Leistung der Antrieb mit seinen Radnabenmotoren schafft: Das rund 2 Tonnen schwere Fahrzeug beschleunigt in 8 Sekunden auf hundert Stundenkilometer (km/h) und schafft maximal eine Geschwindigkeit von 160 km/h. In puncto Reichweite ändert sich prinzipiell nichts. Denn die wird durch den eingebauten Akku festgelegt. Nach Angabe der Wissenschaftler verbraucht bereits der Prototyp nur unwesentlich mehr Energie als der ursprünglich eingebaute zentrale Elektromotor, seine Herstellung sei aber wesentlich günstiger. Die Forscher schätzen, dass ihr Antriebskonzept 30 bis 40 % billiger sein könnte als übliche E-Motoren. Voraussetzung sei eine Produktion in großer Stückzahl.

Top Stellenangebote

Zur Jobbörse
Niedersächsische Landesamt für Bau und Liegenschaften-Firmenlogo
Ingenieure (m/w/d) Architektur / Bauingenieurwesen Niedersächsische Landesamt für Bau und Liegenschaften
Hannover Zum Job 
ESG Elektroniksystem- und Logistik-GmbH-Firmenlogo
Systemingenieur Avionik / Systems Engineer Avionics (gn) ESG Elektroniksystem- und Logistik-GmbH
Fürstenfeldbruck bei München Zum Job 
Landeshauptstadt Stuttgart-Firmenlogo
Projektleiter*in Architektur für öffentliche Bauten (m/w/d) Landeshauptstadt Stuttgart
Stuttgart Zum Job 
MED-EL Medical Electronics-Firmenlogo
R&D Engineer for Embedded Systems (m/f/d) Research & Development MED-EL Medical Electronics
Innsbruck (Österreich) Zum Job 
Landeshauptstadt Stuttgart-Firmenlogo
Projektleiter*in Elektrotechnik und Versorgungstechnik (m/w/d) Landeshauptstadt Stuttgart
Stuttgart Zum Job 
SCHOLZE-THOST GmbH-Firmenlogo
Ingenieure (m/w/d) für BIM-basierte HKLS-Planung SCHOLZE-THOST GmbH
Leinfelden-Echterdingen Zum Job 
GSI - Gesellschaft für Schweißtechnik International mbH Niederlassung SLV München-Firmenlogo
Diplom-Ingenieur / Master / Bachelor (m/w/divers) als Inspektor für Fertigungsüberwachungen bzw. Auditor für Betriebsprüfungen GSI - Gesellschaft für Schweißtechnik International mbH Niederlassung SLV München
München (Home-Office möglich) Zum Job 
MKS Instruments Deutschland GmbH-Firmenlogo
NPI Engineer (m/w/d) MKS Instruments Deutschland GmbH
Kleinmachnow Zum Job 
Langmatz GmbH-Firmenlogo
Produktmanager Glasfaser-Netzausbau (m/w/d) Langmatz GmbH
Garmisch-Partenkirchen Zum Job 
SCHOLZE-THOST GmbH-Firmenlogo
Konstrukteure (m/w/d) für BIM-basierte HKLS-Planung SCHOLZE-THOST GmbH
Leinfelden-Echterdingen Zum Job 
Panasonic Corporation-Firmenlogo
Entwicklungsingenieur (m/w/d) in der Systementwicklung Panasonic Corporation
Lüneburg Zum Job 
MED-EL Medical Electronics-Firmenlogo
Research Engineer, Hearing Implant Fitting (m/f/d) MED-EL Medical Electronics
Innsbruck (Österreich) Zum Job 
MED-EL Medical Electronics-Firmenlogo
Design Engineer, Analog / Mixed Signal IC Design (m/f/d) MED-EL Medical Electronics
Innsbruck (Österreich) Zum Job 
MED-EL Medical Electronics-Firmenlogo
Design Engineer, Analog IC Design (m/f/d) MED-EL Medical Electronics
Innsbruck (Österreich) Zum Job 
MED-EL Medical Electronics-Firmenlogo
R&D Engineer for Clinical Objective Monitoring (m/f/d) MED-EL Medical Electronics
Innsbruck (Österreich) Zum Job 
WBM Wohnungsbaugesellschaft Berlin-Mitte mbH-Firmenlogo
Projektleitung Modernisierung und Instandsetzung (w/m/d) WBM Wohnungsbaugesellschaft Berlin-Mitte mbH
DEKRA Automobil GmbH-Firmenlogo
Sachverständiger für Schadstoffe in Gebäuden - inklusive Teamleitung (m/w/d) DEKRA Automobil GmbH
Stuttgart Zum Job 
Beckhoff Automation GmbH & Co. KG-Firmenlogo
Ingenieur (m/w/d) mechanische Konstruktion I/O Beckhoff Automation GmbH & Co. KG
Stadtwerke München GmbH-Firmenlogo
Leitung Verkehrsinfrastruktur (m/w/d) Stadtwerke München GmbH
München Zum Job 
pmdtechnologies ag-Firmenlogo
Informatiker / Ingenieur / Physiker / Mathematiker (m/w/d) im Unternehmensbereich Software Development pmdtechnologies ag

Abgesehen von den Kosten sieht Lohner auch deutliche Vorteile für die Umwelt. Denn in herkömmlichen Elektromotoren würden vielfach Permanentmagnete verbaut, bei deren Herstellung seltene Metalle zum Einsatz kämen. Diese würden vor allem in China unter schwierigen ökologischen Bedingungen gewonnen. „Unsere Felgenmotoren hingegen werden komplett aus ‚Blech‘, Aluminium und Kupfer hergestellt.“

Illustration Antriebskonzept

Das Funktionsprinzip des Radnabenmotors im Querschnitt.

Foto: SR4Wheel/TH Köln

Gute Straßenlage, aber viel Krach

Gepaart wird das einfache Antriebskonzept mit einer neu entwickelten Steuerungselektronik. Jedes Rad ist individuell ansteuerbar und wird alle 2 Millisekunden geregelt. Das soll die Agilität des Pkw und den Fahrspaß erhöhen. „Über den Lenkwinkel berechnet die Elektronik beispielsweise, wie der Fahrer eine Kurve nehmen möchte, und kann ein ausbrechendes Fahrzeug abfangen. Die äußeren Räder werden dann automatisch stärker und die inneren Räder schwächer angetrieben“, sagt Martin Voßwinkel vom Forschungsteam. Im Praxistest sei es so möglich gewesen, mit 30 % mehr Geschwindigkeit in die Kurven zu gehen – ohne dass der Wagen seine sichere Straßenlage verlor.

Trotzdem gibt es noch einiges zu tun, bevor das neue Antriebskonzept in die Serienproduktion gehen kann. Denn der Prototyp ist ungewöhnlich laut, obwohl die Forscher bereits einige Wochen an den Geräuschen getüftelt haben und den Lärmpegel um die Hälfte senken konnten. „Das Ziel ist nun, die Maschine auf ein akustisches Niveau zu bringen, das massenmarkttauglich ist“, sagt Voßwinkel.

Weitere Beiträge zum Thema Elektromobilität:

Ein Beitrag von:

  • Nicole Lücke

    Nicole Lücke macht Wissenschaftsjournalismus für Forschungszentren und Hochschulen, berichtet von medizinischen Fachkongressen und betreut Kundenmagazine für Energieversorger. Sie ist Gesellschafterin von Content Qualitäten. Ihre Themen: Energie, Technik, Nachhaltigkeit, Medizin/Medizintechnik.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.