Flexible Elektronik 27.01.2020, 08:31 Uhr

Forscher schaffen Voraussetzung für elektronische Haut

Mit einem neuen Magnetsensorsystem wollen Wissenschaftler den Tastsinn der Haut künstlich nachbilden. Das Besondere: Die Sensoren sind auf einer einzigen Plattform miteinander verbunden, sodass keine individuelle Verkabelung erfolgen muss.

Neue Plattform

Das System: flexible elektronische Haut mit Magnetsensoren und einer komplexen elektronischen Schaltung zur Erfassung der Magnetfeldverteilung.

Foto: Masaya Kondo

Den wenigsten Menschen ist wohl bewusst, dass ihr Körper ein Wunderwerk der Biologie ist. Die Vorgänge und der Aufbau sind so komplex und gleichzeitig so perfekt aufeinander abgestimmt, dass Wissenschaftler hart daran arbeiten müssen, wenn sie einzelne Bereiche nachahmen wollen. Das gilt auch für die Haut. Sie hat viele Funktionen. Besonders große Bedeutung kommt dem Tastsinn zu.

Der Tastsinn ist notwendig, um Informationen aus der Umgebung zu verarbeiten, beispielsweise wenn Vorgänge wie das Greifen von Gegenständen ausgeführt werden sollen. Damit das funktioniert, sind unzählige Nervenzellen dafür zuständig, Reize aufzunehmen und weiterzuleiten – sie sind optimal miteinander vernetzt. Forscher vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sind jetzt einen Schritt weitergekommen, um dieses System nachbilden zu können.

Alle Sensoren der elektronischen Haut müssen miteinander vernetzt sein

Es ist eines der großen Projekte in der Robotik, künstliche Haut mit Tastsinn zu versehen und Roboter oder einzelne Prothesen damit auszustatten. Das könnte die Funktionalität deutlich erhöhen. Außerdem wäre es unter Umständen möglich, die elektronische Haut mit zusätzlichen Komponenten zu optimieren, etwa einem Orientierungssinn im Magnetfeld.

Viele Voraussetzungen dafür hat die Wissenschaft in den vergangenen Jahren bereits geschaffen. Vor allem gibt es unterschiedliche Sensoren, die auf der einen Seite selbst dünn und biegsam sind und auf der anderen Seite auch auf weichen und elastischen Oberflächen funktionieren. Da die Sensoren in der Lage sind, verschiedene physikalische Wechselwirkungen zu registrieren, könnten sie wie ein künstliches Nervensystem geschaltet werden und die Informationen weiterleiten – theoretisch.

Denn praktisch gibt es ein Hindernis, dass die Forscher bislang noch nicht überwinden konnten: Jeder einzelne Sensor muss dafür bei einer Anordnung auf einer Fläche separat angesteuert und ins Netz integriert werden. Eine Verkabelung für die einzelnen Sensoren wollen die Wissenschaftler jedoch vermeiden und zwar mit dem gleichen Prinzip, das einst die Schaltkreise zum integrierten Mikrochip ermöglicht hat, also der Integration einzelner Magnetsensoren mit weiteren elektronischen Komponenten wie zum Beispiel Signalverstärkern. Am Ende soll ein vollintegriertes System entstehen.

Das neue System ist auf einer Plattform integriert und sehr robust

Die Dresdner Forscher haben nun, gemeinsam mit Kollegen aus Chemnitz und Osaka, ein magnetisches Sensorsystem vorgestellt, das eine wichtige Grundlage darstellen könnte. Es besteht aus einer Anordnung von insgesamt zwei mal vier Magnetsensoren und einem organischen Bootstrap-Schieberegister, der die Sensormatrix ansteuert, sowie organischen Signalverstärkern. Dabei basieren alle elektronischen Komponenten auf organischen Dünnschichttransistoren und sind in einer einzigen Plattform vereint.

Das System soll laut der Wissenschaftler eine hohe magnetische Empfindlichkeit besitzen und die zweidimensionale Magnetfeldverteilung in Echtzeit abbilden. Außerdem sollen Tests gezeigt haben, dass sich das System bei mechanischen Verformungen, wie Biegen, Knittern oder Knicken, sehr robust verhält.

In Zukunft soll die Anzahl der Sensoren pro Oberfläche erhöht werden

Die Forscher sind mit dieser Plattform sehr zufrieden, da ihnen auch die Verwendung organischer Bootstrap-Schieberegister gelungen ist, was sie als einen wichtigen Entwicklungserfolg auf dem Weg zur elektronischen Haut betrachten. „Unsere ersten integrierten Magnetfunktionen beweisen, dass sich flexible Dünnschichtsensoren in komplexe organische Schaltkreise integrieren lassen“, sagt Oliver G. Schmidt, Direktor am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden. „Die Kompatibilität und Flexibilität dieser Geräte ist für moderne und zukünftige Anwendungen wie Soft-Robotics, Implantate und Prothetik unverzichtbar. Der nächste Schritt besteht darin, die Anzahl der Sensoren pro Oberfläche zu erhöhen und die elektronische Haut auf größere Oberflächen auszudehnen.“

Lesen Sie hier mehr zu Entwicklungen in der Robotik:

Ein Beitrag von:

  • Nicole Lücke

    Nicole Lücke macht Wissenschaftsjournalismus für Forschungszentren und Hochschulen, berichtet von medizinischen Fachkongressen und betreut Kundenmagazine für Energieversorger. Sie ist Gesellschafterin von Content Qualitäten. Ihre Themen: Energie, Technik, Nachhaltigkeit, Medizin/Medizintechnik.

Themen im Artikel

Stellenangebote im Bereich Automatisierungstechnik

H.C. Starck Tungsten GmbH-Firmenlogo
H.C. Starck Tungsten GmbH Head of Process Control Technology and Machine Learning (m/w/d) Goslar
Lessmüller Lasertechnik GmbH-Firmenlogo
Lessmüller Lasertechnik GmbH Projektingenieur (m/w/d) für Laserapplikation München
STADT BAYREUTH-Firmenlogo
STADT BAYREUTH Ingenieur (m/w/d) der Fachrichtung Elektrotechnik Bayreuth
matchING Engineering GmbH-Firmenlogo
matchING Engineering GmbH SPS-Programmierer (m/w/d) Aschaffenburg
Murrelektronik-Firmenlogo
Murrelektronik System- and Application Test Engineer (m/w/d) mit Schwerpunkt Industrial Ethernet, Control oder IoT Oppenweiler, Holzmaden
IMS Messsysteme GmbH-Firmenlogo
IMS Messsysteme GmbH Systemingenieur (m/w/i) Heiligenhaus
Wacker Chemie AG-Firmenlogo
Wacker Chemie AG Digitalisierungsmanager (w/m/d) Burghausen
Framatome GmbH-Firmenlogo
Framatome GmbH Projektleiter (m/w/d) Steuerungs- und Messtechnik Karlstein am Main
Smurfit Kappa Herzberg Solid Board GmbH-Firmenlogo
Smurfit Kappa Herzberg Solid Board GmbH Spezialist für Automatisierungstechnik und Datenmanagement (m/w/d) Herzberg
Deutsche Rentenversicherung Bund-Firmenlogo
Deutsche Rentenversicherung Bund Elektroingenieur*in (m/w/div) Bereich Schwachstrom Berlin

Alle Automatisierungstechnik Jobs

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.