Stärkstes Material der Welt 29.05.2018, 13:06 Uhr

Neue Superfaser ist achtmal stärker als Spinnenseide

Am Hamburger Teilchenbeschleuniger DESY hat ein Forscherteam jetzt das stärkste Biomaterial hergestellt, das jemals produziert worden ist. Die Superfaser lässt sogar Spinnenseide, die als stärkstes Material auf Erden gilt, alt aussehen. Gleich achtmal stärker ist die Faser, die aus Zellulose-Nanofasern durch Werkstoff-Zaubertricks entsteht.

So sieht die stärkste Faser der Welt unter dem Rasterelektronenmikroskop aus.

So sieht die stärkste Faser der Welt unter dem Rasterelektronenmikroskop aus.

Foto: Nitesh Mittal/KTH Stockholm

Nun ist die Spinne vom Thron gestoßen worden: Bisher galt die von ihr gesponnene Spinnenseide als das stärkste Material auf Erden, noch stärker als Stahl. Ein Forscherteam um Daniel Söderberg von der Königlichen Technischen Hochschule (KTH) Stockholm hat jetzt gemeinsam mit dem schwedischen Forschungsinstitut RISE Bioeconomy, der Stanford-Universität und der Universität von Michigan an der Röntgenlichtquelle PETRA III am Teilchenbeschleuiger Deutsches Elektronen-Synchroton (DESY) in Hamburg das stärkste Biomaterial hergestellt, welches jemals produziert worden ist. „Die von uns hergestellten biobasierten Nanozellulosefäden sind achtmal steifer und einige Male zugfester als die Abseilfäden aus natürlicher Spinnenseide“, betont Daniel Söderberg. „Wenn man biobasiertes Material sucht, gibt es nichts wirklich Vergleichbares. Es ist auch stärker als Stahl und alle anderen Metalle oder Legierungen sowie als Fiberglas und die meisten anderen synthetischen Materialien.“ In der Fachsprache zeigte das Material eine Biegsteifigkeit von 86 Gigapascal und eine Zugfestigkeit von 1,57 Gigapascal. Der Stockholmer Wissenschaftler ist überzeugt, dass es ein vergleichbares biobasiertes Material auf diesem Planeten nicht gibt.

Technik der hydrodynamischen Fokussierung

Dieser Weltrekord gelang den Forschern mit kommerziell angebotenen Zellulose-Nanofasern. Diese sogenannten Fibrillen sind nur etwa 2 bis 5 Nanometer dünn und bis zu 700 Nanometer lang und sind im Prinzip die Basis von Pflanzen und Holz. Mit diesen konventionellen Fasern gelang den Wissenschaftlern ein materialwissenschaftliches Meisterstück.

Top Stellenangebote

Zur Jobbörse
Die Autobahn GmbH des Bundes-Firmenlogo
Projektleiter (w/m/d) Straßenbau in Donaueschingen Die Autobahn GmbH des Bundes
Freiburg im Breisgau, Donaueschingen Zum Job 
Menlo Systems GmbH-Firmenlogo
Development Engineer (m/f/d) for photonic integrated circuitry (PIC) Testing & Packaging Menlo Systems GmbH
Planegg Zum Job 
Siegfried PharmaChemikalien Minden GmbH-Firmenlogo
Expert*in Computersystemvalidierung (CSV) Siegfried PharmaChemikalien Minden GmbH
Deutsches Zentrum für Luft- und Raumfahrt e. V.-Firmenlogo
Versorgungsingenieur/in oder Elektroingenieur/in (w/m/d) Projektsteuerung von Baumaßnahmen als Baumanager/in in der Bauherrenfunktion Deutsches Zentrum für Luft- und Raumfahrt e. V.
Stadtwerke Wiesbaden Netz GmbH-Firmenlogo
Planungsingenieur (m/w/d) Elektrische Verteilnetze Stadtwerke Wiesbaden Netz GmbH
Wiesbaden Zum Job 
Stadt Bochum-Firmenlogo
Bauingenieurinnen / Bauingenieure (w/m/d) Stadt Bochum
Dräger Safety AG & Co. KGaA-Firmenlogo
Vertriebsingenieur / Vertriebsmitarbeiter Gasmesstechnik / Sicherheitstechnik (m/w/d) Dräger Safety AG & Co. KGaA
Düsseldorf, Leverkusen, Köln Zum Job 
Jacobs-Firmenlogo
Civil Supervisors (m/w/d) für die Bereiche Rohbau/ Innenausbau/ Tiefbau & Infrastruktur/ baulicher Brandschutz Jacobs
Duisburg Zum Job 
Jacobs-Firmenlogo
Assembly Supervisors (m/w/d) für die Bereiche Instrumentierung/ Elektrotechnik/ Mechanik/ Rohrleitungsbau/ Stahlbau/ Kabeltragsysteme Jacobs
Duisburg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektleiter (w/m/d) Straßenbau Die Autobahn GmbH des Bundes
Freiburg im Breisgau Zum Job 
ProMinent GmbH-Firmenlogo
Sales Engineer (m/w/d) - Customized Projects ProMinent GmbH
Heidelberg Zum Job 
ProMinent GmbH-Firmenlogo
Technischer Redakteur (m/w/d) ProMinent GmbH
Heidelberg Zum Job 
ProMinent GmbH-Firmenlogo
Ingenieur für Verfahrens- & Applikationsentwicklung (m/w/d) ProMinent GmbH
Heidelberg Zum Job 
KNDS Deutschland GmbH & Co. KG-Firmenlogo
Technischer Projektleiter (m/w/d) Panzerhaubitze 2000 KNDS Deutschland GmbH & Co. KG
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur Planung Ingenieurbauwerke (w/m/d) Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
Jost Hurler Beteiligungs und Verwaltungs GmbH & Co. KG-Firmenlogo
Projektmanager Bau (m/w/d) Jost Hurler Beteiligungs und Verwaltungs GmbH & Co. KG
München Zum Job 
KNDS Deutschland GmbH & Co. KG-Firmenlogo
Softwareentwickler (m/w/d) Embedded Systems KNDS Deutschland GmbH & Co. KG
KNDS Deutschland GmbH & Co. KG-Firmenlogo
Qualitätssicherung - Spezialist Supplier Quality (m/w/d) KNDS Deutschland GmbH & Co. KG
Leibniz-Institut für Plasmaforschung und Technologie e.V. (INP)-Firmenlogo
Ingenieur*in (w/m/d) Verfahrenstechnik für innovative Wasserstofftechnologien Leibniz-Institut für Plasmaforschung und Technologie e.V. (INP)
Greifswald Zum Job 
WAHL GMBH-Firmenlogo
Bauleiter Abbruch (m/w/d) WAHL GMBH
Remagen Zum Job 

Zunächst schickten sie die Fasern in Wasser durch einen hauchdünnen und nur einen Millimeter breiten Kanal in einem Stahlblock. Durch zwei Paare seitlicher Zuflüsse ließen sie entionisiertes Wasser und gleichzeitig Wasser mit einem niedrigen pH-Wert einfließen. Dadurch verengt sich der fließende Strang der Nanofasern auf ein hundertstel Millimeter und die Fasern werden elektrisch geladen. Diese Technik nennt sich hyperdynamische Fokussierung und bewirkt, dass die Nanofasern sich wie durch eine Zauberhand kontrolliert zu einem hoch strukturierten Faden zusammenlagern.

„Potenzial für die Biomedizin“

Supramolekulare Kräfte wie elektrostatische oder Van-der-Waals-Kräfte sorgen dafür, dass die Nanofasern ohne Klebstoff zusammen haften. Durch diesen Trick konnten die Forscher die besonderen mechanischen Eigenschaften der Nanofasern in die sehr viel größere makroskopische Welt übertragen.

Daniel Söderberg hält das starke Biomaterial für eine umweltfreundliche Alternative für Kunststoffe in Autos, für Möbel und in Flugzeugen. „Unser neues Material hat auch Potenzial für die Biomedizin, da Zellulose vom Körper nicht abgestoßen wird“, erläutert Söderberg. Möglicherweise begründet das Material der schwedischen Wissenschaftler völlig neue Anwendungen in der Prothetik.

Röntgenstrahl von PETRA III als Beobachungs-Lichtquelle

Der helle Röntgenstrahl von PETRA III diente dem Forscherteam als Beobachungs-Lichtquelle. Denn im Röntgenlicht ließ sich der Prozess der hydrodynamischen Fokussierung bis ins kleinste Detail verfolgen und half dabei, den Prozess zu optimieren. Es ist das Streumuster des Röntgenlichts, das dem Team zeigte, wie sich die Nanofibrillen parallel ausrichten und tatsächlich durch die zwischenmolekularen Bindungskräfte aneinanderhaften.

„Das Röntgenlicht erlaubt uns, die detaillierte Struktur des Fadens zu analysieren, während er entsteht. Das schließt sowohl die Materialstruktur ein als auch die hierarchische Ordnung in den superstarken Fasern“, erklärt Ko-Autor Stephan Roth, DESY-Wissenschaftler und Leiter der Mikro- und Nanofokus-Messstation P03, an der die Fäden gesponnen wurden. „Wir haben Fäden von bis zu 15 Mikrometern Dicke und mehreren Metern Länge hergestellt.“

Die Superfäden verhalten sich wie gewöhnliche Fäden

Die superstarken Fäden verhalten sich dabei wie jeder andere gewöhnliche Faden und können zu superstarken Stoffen verwoben werden. Die Herstellungskosten solcher superstarken Stoffe soll laut den Forschern mit den Produktionskosten besonders fester synthetischer Stoffe konkurrieren können.

„Aus dem neuen Material lassen sich im Prinzip biologisch abbaubare Bauteile entwickeln“, meint Stephan Roth. Die Forscher haben mit ihrem Werkstoff-Meisterstück die Barriere zwischen der Nanowelt und der Alltagswelt überbrückt. Die Zellulose-Nanofasern sind nach der hyperdynamischen Fokussierung zu einer nahezu perfekten Anordnung arrangiert.

„Überragende Leistung aus dem Nanokosmos in den Makrokosmos übertragen“

So können sie ein Material aus Nanofasern entwickeln, das sich für größere Werkstücke nutzen lässt und trotzdem die extreme Zugfestigkeit und die mechanische Belastbarkeit der Nanofasern erhält. „Wir können jetzt die überragende Leistung aus dem Nanokosmos in den Makrokosmos übertragen“, betont Söderberg. „Ermöglicht hat diese Entdeckung, dass wir gelernt haben, Partikelgröße, Wechselwirkungen, Ausrichtung, Ausbreitung, Netzwerkbildung und Gruppierung zu verstehen und zu kontrollieren.“ Das Forscherteam hat seine Ergebnisse jüngst im Fachblatt ACS Nano“ der US-amerikanischen Chemischen Gesellschaft vorgestellt.

Ein Beitrag von:

  • Detlef Stoller

    Detlef Stoller ist Diplom-Photoingenieur. Er ist Fachjournalist für Umweltfragen und schreibt für verschiedene Printmagazine, Online-Medien und TV-Formate.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.