Krankenhauskeime 08.01.2014, 16:00 Uhr

Implantate mit nanorauen Titanoberflächen sollen Infektionsgefahr senken

Jedes Jahr sterben in deutschen Krankenhäusern rund 15.000 Menschen, weil Mikroben an Implantaten Infektionen auslösen. Da viele Krankenhauskeime bereits gegen Antibiotika resistent sind, setzt ein neues Forschungsprojekt am Implantat selbst an: Auf nanorauen Titanoberflächen sollen Mikroben nicht mehr haften können. 

Die Doktorandin Claudia Lüdecke untersucht Krankenhauskeime an einem Rasterelektronenmikroskop der Universität Jena. Diese sollen sich auf Titanoberflächen möglichst nicht mehr festhalten können. Doch dafür ist eine bestimmte Struktur im Nanobereich erforderlich. 

Die Doktorandin Claudia Lüdecke untersucht Krankenhauskeime an einem Rasterelektronenmikroskop der Universität Jena. Diese sollen sich auf Titanoberflächen möglichst nicht mehr festhalten können. Doch dafür ist eine bestimmte Struktur im Nanobereich erforderlich. 

Foto: Friedrich-Schiller-Universität Jena/Jan-Peter Kasper

In deutschen Krankenhäusern fangen sich jährlich rund eine halbe Million Menschen Infektionen ein. Meist handelt es sich um Patienten, denen Chirurgen Implantate einsetzen: Hüft- oder Knieprothesen, künstliche Herzklappen, Zahnimplantate oder Katheter. Setzen sich an diesen Implantaten Keime ab, kann es zur Infektion kommen. Die traurige Bilanz: fast 15.000 Menschen sterben jedes Jahr an den Folgen.

Immer mehr Krankenhauskeime sind gegen Antibiotika resistent

Um das Problem einzudämmen, verabreichen Ärzte den Patienten in der Regel Antibiotika. Das Problem: Immer mehr Krankenhauskeime entwickeln Resistenzen gegen den Wirkstoff. Am besten wäre es daher, wenn  sich die Mikroben erst gar nicht auf den Implantaten ablagern und dort vermehren könnten, dachten sich Forscher der Friedrich-Schiller-Universität Jena (FSU). Die Materialwissenschaftler um Prof. Klaus D. Jandt experimentierten deshalb mit nanorauen Titanoberflächen, auf denen sich Mikroben unwohl fühlen sollen. 

Nanoraue Oberflächen entstehen im Elektronenstrahlverdampfer

Um nanoraue Oberflächen zu erzeugen, benutzen die Wissenschaftler einen Elektronenstrahlverdampfer. Im Inneren einer Vakuumkammer erwärmt eine elektrische Heizung Titan auf die Temperatur des Siedepunkts. Das Metall glüht, verdampft und kondensiert anschließend auf einer Glasschicht. Dabei entsteht eine Oberfläche mit winzig kleinen metallischen Erhebungen im Nanobereich. Im nächsten Schritt prüfen die Forscher die neue Oberfläche auf ihre antimikrobielle Eigenschaft.

Ein wichtiger Schritt, um die Wirksamkeit antimikrobieller Materialien zu prüfen, sind standardisierte Testsysteme. „Bisher gibt es eine ganze Reihe verschiedener, nicht vergleichbarer Tests zur Prüfung antimikrobieller Eigenschaften von Materialien“, erklärt Dr. Martin Roth vom Hans-Knöll-Institut in Jena (HKI). Die Forscher haben deswegen ein neues Testsystem entwickelt.

Mikroben können sich nicht mehr festhalten

Mit diesem neuen Testverfahren konnten die Wissenschaftler beweisen, dass Mikroben erhebliche Schwierigkeiten haben, auf nanorauen Titanoberflächen zu haften. Dabei gibt es eine interessante Korrelation: Je rauer die Oberfläche, desto einfacher können sich Mikroben festhalten. Erst ab einer bestimmten Feinstruktur im Nanobereich haben sie kaum noch eine Chance. Als mögliche Erklärung für dieses Phänomen vermuten die Jenaer Forscher eine Fehlpassung zwischen der Geometrie der Materialoberfläche und der Form der Keime.

„Wir werden noch weitere Forschungsarbeiten machen, haben aber schon ermutigende Ergebnisse“, sagte Prof. Klaus Jandt im Gespräch mit ingenieur.de. „In Zukunft könnten Implantate möglich werden, die Implantat-assoziierte Infektionen und den Einsatz von Antibiotika in Krankenhäusern reduzieren.“ 

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitet als freiberuflicher Journalist für Zeitschriften und Onlinemagazine wie die VDI Nachrichten und Ingenieur.de.

Themen im Artikel

Stellenangebote im Bereich Forschung & Entwicklung

SET GmbH-Firmenlogo
SET GmbH Elektronikentwickler / Entwicklungsingenieur Hardware / Entwicklungsingenieur Elektronik (m/w/d) Wangen im Allgäu, Düsseldorf
Capgemini Engineering-Firmenlogo
Capgemini Engineering Entwicklungsingenieur Hochvolt Batteriesysteme Automotive (m/w/d) Stuttgart
A-Z Gartenhaus GmbH-Firmenlogo
A-Z Gartenhaus GmbH Projektleiter Holzbau (m/w/d) (Techniker/Meister Holztechnik, Tischlermeister o. ä.) Hamburg
ROMA KG-Firmenlogo
ROMA KG Ingenieur / Techniker (m/w/d) Produktentwicklung / Konstruktion Burgau bei Ulm/Augsburg
ROMA KG-Firmenlogo
ROMA KG Ingenieur / Techniker (m/w/d) Bereich: Produktentwicklung / Konstruktion Burgau
Capgemini Engineering-Firmenlogo
Capgemini Engineering Entwicklungsingenieur Funktionsentwicklung Batteriemanagement Hochvoltspeicher Elektromobilität (m/w/d) München
Physik Instrumente (PI) GmbH & Co. KG-Firmenlogo
Physik Instrumente (PI) GmbH & Co. KG Leiter Produktentwicklung (m/w/d) Raum Eschbach
Physik Instrumente (PI) GmbH & Co. KG-Firmenlogo
Physik Instrumente (PI) GmbH & Co. KG Entwicklungsingenieur Piezoantriebstechnologie (m/w/d) Raum Karlsruhe
Dynamic Engineering GmbH-Firmenlogo
Dynamic Engineering GmbH Ingenieur / Techniker Versuch (m/w/d) – Automotive / Rail / Luft- und Raumfahrt München
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen-Firmenlogo
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen Development Engineer Hardware (m/w/d) in Teilzeit Schwieberdingen bei Stuttgart

Alle Forschung & Entwicklung Jobs

Top 5 Nanotechno…

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.