Big Data 27.09.2024, 07:00 Uhr

Neues KI-Modell bringt Hoffnung für die Therapie seltener Krankheiten

Ein KI-Tool namens TxGNN eröffnet neue Möglichkeiten bei der Behandlung seltener und bisher unheilbarer Krankheiten. Es identifiziert potenzielle Wirkstoffe aus bestehenden Medikamenten für mehr als 17.000 Erkrankungen und übertrifft dabei bisherige Ansätze.

Ein Blister mit Medikamentenkapseln.

Das neue KI-System erkennt, welche Therapiealternativen in bekannten Medikamenten stecken.

Foto: PantherMedia / Ahmad Najiullah

Weltweit leiden etwa 300 Millionen Menschen an einer der mehr als 7.000 bekannten seltenen Erkrankungen. Für die meisten dieser Krankheiten existieren bislang keine wirksamen Therapien, was sowohl für die Betroffenen als auch für das Gesundheitssystem eine enorme Belastung darstellt.

Das neuartige KI-Modell TxGNN, entwickelt von Wissenschaftlerinnen und Wissenschaftlern der Harvard Medical School, könnte nun einen Wendepunkt in der Behandlung dieser Erkrankungen markieren. Es nutzt die Kraft der künstlichen Intelligenz (KI), um in bestehenden Medikamenten neue Anwendungsmöglichkeiten zu entdecken und gibt damit betroffenen sowie Ärztinnen und Ärzten neue Hoffnung im Kampf gegen seltene und vernachlässigte Krankheiten.

TxGNN hebt sich von bisherigen KI-Modellen durch seinen krankheitsübergreifenden Ansatz ab. Anstatt nur für einzelne Erkrankungen trainiert zu werden, erkennt es gemeinsame Merkmale verschiedener gesundheitlicher Beschwerden. Diese Fähigkeit ermöglicht es, Wissen über gut erforschte auf weniger verstandene Erkrankungen zu übertragen. Die KI wurde mit riesigen Datenmengen trainiert, darunter DNA-Informationen, Zellsignale, Genaktivitäten und klinische Notizen. Durch diesen umfassenden Ansatz kann TxGNN selbstständig neue Erkenntnisse generieren und diese auch auf Krankheiten anwenden, für die es nicht explizit trainiert wurde.

Künstliche Intelligenz revolutioniert die Arzneimittelforschung

Künstliche Intelligenz zu nutzen, um neue Anwendungen für bestehende Medikamente zu identifizieren, bietet enorme Vorteile gegenüber der klassischen Arzneimittelforschung. Erstens ermöglicht KI eine deutlich schnellere Entwicklung, da bereits zugelassene Wirkstoffe zügiger für neue Indikationen eingesetzt werden können. Zweitens reduziert dieser Ansatz die Kosten erheblich, da die aufwendige Entwicklung komplett neuer Medikamente entfällt. Drittens profitieren Patientinnen und Patienten von einem besseren Sicherheitsprofil, da die Risiken zugelassener Wirkstoffe bereits bekannt sind.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
Frankfurt University of Applied Sciences-Firmenlogo
Professur "Elektrotechnik, insbesondere Nachhaltige intelligente Systeme" Frankfurt University of Applied Sciences
Frankfurt am Main Zum Job 
Frankfurt University of Applied Sciences-Firmenlogo
Professur "Vernetzte Eingebettete Systeme" (w/m/d) Frankfurt University of Applied Sciences
Frankfurt am Main Zum Job 
Otto-von-Guericke-Universität Magdeburg-Firmenlogo
Projektingenieur*in (m/w/d) für Elektro- Fernmelde- und IT-Technik / Verantwortliche Elektrofachkraft VEFK Betriebstechnik Otto-von-Guericke-Universität Magdeburg
Magdeburg Zum Job 
Alhäuser + König Ingenieurbüro GmbH-Firmenlogo
Ingenieur:in für Elektrotechnik / Master / Bachelor /Diplom (m/w/d) Alhäuser + König Ingenieurbüro GmbH
Bonn, Hachenburg Zum Job 
Stadtwerke Rüsselsheim GmbH-Firmenlogo
Messtechniker als Spezialist Gerätemanagement Strom (m/w/d Stadtwerke Rüsselsheim GmbH
Rüsselsheim Zum Job 
Fachhochschule Münster-Firmenlogo
Professur "Medizinische Bildgebung und Mathematik" (w/m/d) Fachhochschule Münster
Steinfurt Zum Job 
Agile Robots SE-Firmenlogo
Senior Projektingenieur - Industrial Automation (m/w/d) Agile Robots SE
München Zum Job 
Universität Münster-Firmenlogo
Ingenieur*in / Techniker*in Elektrotechnik in der Abteilung 4.4 (Elektrische Gebäudeausrüstung) Universität Münster
Münster Zum Job 
Freie Universität Berlin-Firmenlogo
Referatsleiter*in (m/w/d) für die Betriebstechnik und die bauliche Unterhaltung (Ingenieur*in für Aufgaben des technischen Betriebes) Freie Universität Berlin
BG ETEM-Firmenlogo
Aufsichtsperson gemäß des § 18 SGB VII (m/w/d) für ein Aufsichtsgebiet in der Region Dinkelsbühl, Aalen, Schwäbisch-Hall in den Branchenkompetenzen Elektrotechnische Industrie und Feinmechanik BG ETEM
Nürnberg Zum Job 
STOPA Anlagenbau GmbH-Firmenlogo
Ingenieur / Techniker (m/w/d) Elektrotechnik / Automatisierungstechnik für Inbetriebnahme Außendienst (Elektrotechniker, Maschinenbauingenieur o. ä.) STOPA Anlagenbau GmbH
Achern-Gamshurst Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur (w/m/d) Elektrotechnik Die Autobahn GmbH des Bundes
Hamburg Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in (W2) für das Lehrgebiet "Automatisierungssysteme in Gebäude-, Energie- und Umwelttechnik" Hochschule Esslingen - University of Applied Sciences
Esslingen am Neckar Zum Job 
Christian-Albrechts-Universität zu Kiel-Firmenlogo
Ingenieur*in der Fachrichtung Versorgungstechnik/ Maschinenbau oder Elektrotechnik Christian-Albrechts-Universität zu Kiel
Broadcast Solutions GmbH-Firmenlogo
Elektroingenieur* in Vollzeit (m/w/d) Broadcast Solutions GmbH
Frankfurt University of Applied Sciences-Firmenlogo
Professur "Software Engineering - Moderne Verfahren" (w/m/d) Frankfurt University of Applied Sciences
Frankfurt am Main Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 
AbbVie Deutschland GmbH & Co. KG-Firmenlogo
Senior Project Engineer - Capital Investments (all genders) AbbVie Deutschland GmbH & Co. KG
Ludwigshafen am Rhein Zum Job 
Stadtreinigung Hamburg Anstalt des öffentlichen Rechts-Firmenlogo
Ingenieurin (m/w/d) TGA Elektrotechnik Stadtreinigung Hamburg Anstalt des öffentlichen Rechts
Hamburg Zum Job 
Vermögen und Bau Baden-Württemberg - Amt Ulm-Firmenlogo
Diplom-Ingenieur (FH/DH) bzw. Bachelor (w/m/d) der Fachrichtung Elektrotechnik, Versorgungstechnik, Gebäudeklimatik, Gebäude- und Energietechnik Vermögen und Bau Baden-Württemberg - Amt Ulm

Darüber hinaus kann die künstliche Intelligenz mögliche Nebenwirkungen und Kontraindikationen vorhersagen – ein großer Fortschritt gegenüber dem bisherigen Trial-and-Error-Ansatz in frühen klinischen Studien. TxGNN hat in ersten Tests hervorragende Ergebnisse geliefert. Es identifizierte Arzneimittelkandidaten aus fast 8.000 Medikamenten für 17.080 Krankheiten, darunter auch solche, für die es bisher keine verfügbaren Behandlungen gibt. Im Vergleich zu führenden KI-Modellen für die Wiederverwendung von Medikamenten indentifizierte TxGNN mögliche Medikationen durchschnittlich fast 50 Prozent besser. Bei der Vorhersage von Kontraindikationen erreichte es sogar eine um 35 Prozent höhere Genauigkeit.

Eine Besonderheit von TxGNN ist seine Fähigkeit, Erklärungen für seine Vorhersagen zu liefern. Diese Transparenz kann das Vertrauen von Medizinerinnen und Medizinern in die KI-gestützten Empfehlungen stärken und ist ein wichtiger Schritt zur Integration von KI in den klinischen Alltag. Die Kombination aus Präzision und Nachvollziehbarkeit macht TxGNN zu einem spannenden Werkzeug für die klinische Forschung, insbesondere im Bereich seltener Erkrankungen.

Neue Hoffnung durch KI-gestützte Therapieansätze

Die Umnutzung bestehender Medikamente, auch als Drug Repurposing bekannt, ist ein attraktiver Ansatz. Er basiert auf der Tatsache, dass die meisten Medikamente multiple Wirkungen haben, die über ihre ursprünglichen Ziele hinausgehen. Viele dieser Effekte bleiben bei der Entwicklung und Zulassung unentdeckt und zeigen sich erst nach jahrelanger Anwendung. Tatsächlich haben fast 30 Prozent der von der FDA zugelassenen Arzneimittel nach der Erstzulassung mindestens eine zusätzliche Behandlungsindikation erhalten. TxGNN nutzt dieses Potenzial, indem es große Datenmengen analysiert und Verbindungen herstellt, die für den Menschen oft nicht erkennbar sind.

In einem Test wurde das System aufgefordert, Medikamente für drei seltene Erkrankungen zu finden, die es während seiner Ausbildung nicht gesehen hatte. Die Empfehlungen des Modells stimmten in allen Fällen mit dem aktuellen medizinischen Wissen überein und lieferten zusätzlich plausible Begründungen für die Auswahl. Die Entwicklerinnen und Entwickler von TxGNN haben das Tool kostenlos zur Verfügung gestellt und ermutigen Forschende, es für die Suche nach neuen Therapien zu nutzen. Insbesondere für bisher nicht behandelbare Erkrankungen könnte dies einen Durchbruch bedeuten. Das Team arbeitet bereits mit mehreren Stiftungen für seltene Krankheiten zusammen, um dabei zu helfen, mögliche Behandlungsmethoden zu ermitteln.

Ausblick: KI als Gamechanger in der Medizin

TxGNN ist ein deutlicher Fortschritt in der Anwendung von KI in der Medizin. Es zeigt eindrucksvoll, wie sich die Grenzen des bisher Möglichen verschieben lassen und so neue Perspektiven in der Behandlung komplexer und seltener Erkrankungen möglich werden. Die Fähigkeit von TxGNN, aus vorhandenen Daten neue Erkenntnisse zu ziehen und diese auf unbekannte Krankheitsbilder zu übertragen, könnte die Arzneimittelforschung grundlegend verändern. Gleichzeitig wirft der Einsatz solch fortschrittlicher KI-Systeme auch wichtige ethische und regulatorische Fragen auf. Wie kann sichergestellt werden, dass die Empfehlungen der KI zuverlässig und sicher sind? Wie lässt sich das System in den klinischen Alltag integrieren, ohne dass es zu einer Überabhängigkeit von der Technologie kommt?

Diese Fragen müssen in den kommenden Jahren sorgfältig diskutiert und beantwortet werden. Trotz dieser Herausforderungen überwiegt das enorme Potenzial von TxGNN und ähnlichen KI-Systemen. Sie könnten nicht nur die Entwicklung neuer Therapien beschleunigen, sondern auch die Kosten für die Gesundheitssysteme weltweit reduzieren. Die künstliche Intelligenz könnte sich so als wahrer Gamechanger in der Medizin erweisen.

Ein Beitrag von:

  • Julia Klinkusch

    Julia Klinkusch ist seit 2008 selbstständige Journalistin und hat sich auf Wissenschafts- und Gesundheitsthemen spezialisiert. Seit 2010 gehört sie zum Team von Content Qualitäten. Ihre Themen: Klima, KI, Technik, Umwelt, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.