Entwicklung der ETH Zürich 04.07.2018, 13:09 Uhr

Diese Maschine bewegt sich nur mit künstlichen Muskeln

Ein Miniatur-U-Boot, das ohne Motor, Treibstoff und Strom auskommt? Das funktioniert in ersten Ansätzen, wie ein alternatives Antriebskonzept der ETH Zürich beweist. Es setzt auf künstliche Muskeln mit Formgedächtnis, die ihre Energie aus Temperaturunterschieden beziehen.

Illustration des Tauchroboters mit künstlichen Muskeln: Die Maschine bewegt sich ohne Motor, so die Vision der Forscher der ETH Zürich.

Illustration des Tauchroboters mit künstlichen Muskeln: Die Maschine bewegt sich ohne Motor, so die Vision der Forscher der ETH Zürich.

Foto: Tim Chen/ETH Zürich

Optisch sieht das Mini-U-Boot unscheinbar aus, das Forscher der ETH Zürich mit dem 3D-Drucker gefertigt haben. Doch es könnte der erste Schritt zu einem alternativen Antrieb sein, der keine externe Energie benötigt.

Das Plastikgefährt ist nur 7,5 cm lang, an beiden Seiten befinden sich zwei rund 5 cm lange Paddel. Das Besondere an der Konstruktion sind die Antriebselemente, die zwischen Rumpf und Paddel montiert sind. Ihr Herzstück sind Kunststoffmuskeln mit Formgedächtnis, mit dem das Boot paddeln kann – ganz ohne Motor, Treibstoff und Strom.

Künstliche Muskeln dehnen sich bei Temperaturwechseln aus

Für einen Paddelschlag ist das Boot auf einen Temperaturwechsel angewiesen. Erwärmt sich das Wasser, dehnen sich die streifenförmigen Muskeln aus – solange, bis sie auf ein Hubelement drücken. Das Hubelement klappt um und löst einen Paddelschlag aus. Das Boot bewegt sich ein Stückchen vorwärts. Eine Technologie, die irgendwann in Tauchrobotern zum Einsatz kommen könnte?

Den Forschern sind zumindest schon komplexere Bewegungsabläufe gelungen. So ist ein Boot einen Paddelschlag vorwärtsgefahren, hat eine Münze abgeworfen und anschließend einen Paddelschlag rückwärts gemacht. Wie die Abfolge der Aktionen funktioniert? Über die Dimension der Kunststoffmuskeln. Dünnere Kunststoffstreifen reagieren schneller als dickere.

Kunststoffmuskel kann bislang nur eine Aktion durchführen

Danach müssen die Forscher die Hubelemente per Hand zurücksetzen. Wie ein Muskel kontrahieren könnte, ohne wie jede Paddelschlag-Länge auf einen Temperaturwechsel angewiesen zu sein? Das erklären die Forscher nicht.

Doch ETH-Professorin Kristina Shea ist überzeugt: „Das Zentrale unserer Arbeit ist, dass wir eine neue und vielversprechende Antriebsart entwickelt haben, die vollständig 3D-gedruckt ist und ohne externe Stromquelle auskommt.“ Denkbar sei, dass die künstlichen Muskeln nicht auf die Wassertemperatur reagieren, sondern auf den Säuregrad oder den Salzgehalt des Wassers.

Nicht nur in der Schweiz, auch in den USA wird an künstlichen Muskeln geforscht. Forscher des Massachusetts Institute of Technology (MIT) lassen sich von Origami inspirieren, der japanischen Kunst des Papierfaltens. Die Ingenieure knicken eine Kunststofffolie zu einem akkordeonähnlichen Skelett und versiegeln es in einem Kunststoffbeutel. Eine Pumpe erzeugt ein Vakuum, Haut und Skelett ziehen sich zusammen und erzeugen eine Hebebewegung.

Das System wiegt nur 2,6 g, ist aber stark genug, um ein 2,6 kg schweres Gewicht zu heben. Strömt Luft in den Beutel zurück, dehnt sich das System wieder aus. Eine Verformung, die in ihren Ursprungszustand zurückkehrt: Nach diesem Prinzip funktionieren auch haarfeine Drähte, die in Handprothesen präzise und kraftvolle Bewegungen ausführen sollen.

Hier wird Ihnen ein externer Inhalt von youtube.com angezeigt.

Mit der Nutzung des Inhalts stimmen Sie der Datenschutzerklärung von youtube.com zu.

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitet als freiberuflicher Journalist für Zeitschriften und Onlinemagazine wie die VDI Nachrichten und Ingenieur.de.

Stellenangebote im Bereich Fahrzeugtechnik

Jungheinrich AG-Firmenlogo
Jungheinrich AG Systemingenieur (m/w/d) Fahrzeugelektrifizierung Region DACH
Bundespolizeiakademie-Firmenlogo
Bundespolizeiakademie Ingenieure (m/w/d) bzw. Hochschulabsolventen zur Verwendung als Polizeirätin/Polizeirat (m/w/d) deutschlandweit
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen-Firmenlogo
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen System and Requirements Engineer (m/w/d) Schwieberdingen bei Stuttgart
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen-Firmenlogo
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen System Engineer Bremssysteme für automatisiertes Fahren (m/w/d) Schwieberdingen bei Stuttgart
Dynamic Engineering GmbH-Firmenlogo
Dynamic Engineering GmbH Ingenieur / Techniker Versuch (m/w/d) – Automotive / Rail / Luft- und Raumfahrt München
XCMG European Research Center GmbH-Firmenlogo
XCMG European Research Center GmbH Ingenieur als Experte (m/w/d) für Integration neuer Technologien an Baggern Krefeld
A. KAYSER AUTOMOTIVE SYSTEMS GmbH-Firmenlogo
A. KAYSER AUTOMOTIVE SYSTEMS GmbH Produktentwickler (m/w/d) Ventile Einbeck
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen-Firmenlogo
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen ADAS Engineer Sensorics (m/w/d) Schwieberdingen bei Stuttgart
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen-Firmenlogo
Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schwieberdingen Ingenieur für Systemtest und Fahrversuch (m/w/d) Schwieberdingen bei Stuttgart
Stadtwerke München GmbH-Firmenlogo
Stadtwerke München GmbH Expert*in Brandschutz (m/w/d) München

Alle Fahrzeugtechnik Jobs

Top 5 Antriebste…

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.