Filmen mit Elektronenblitzen 23.12.2015, 07:49 Uhr

Atome in Bewegung: 0,000000000000001 s in Zeitlupe

Mit der Filmkamera beobachten, wenn sich zwei Atome verbinden? Eigentlich geht das nicht. Zum einen sind Atome unglaublich klein, was extrem hohe Auflösungen erfordert. Zudem laufen die Prozesse enorm schnell ab, was teure Pulslaser erfordert. Jetzt hat ein Forscherteam mit Elektronenblitzen einen Film über die Strukturänderung in einem Molekül gedreht.

Das ist ein Molekülfilm: Die Einzelbilder zeigen auf’s Atom genau, wie sich Pt(dmit)<custom name="sub">2</custom>-Moleküle innerhalb von einigen 100 Femtosekunden (fs) bewegen, während Me<custom name="sub">4</custom>P[Pt(dmit)<custom name="sub">2</custom>]<custom name="sub">2</custom> mit Laserlicht vom isolierenden in den metallisch leitenden Zustand umgeschaltet wird. In der Illustration links ist die anfängliche Struktur dargestellt: grau – Platin, schwarz – Kohlenstoff, gelb – Schwefel.

Das ist ein Molekülfilm: Die Einzelbilder zeigen auf’s Atom genau, wie sich Pt(dmit)2-Moleküle innerhalb von einigen 100 Femtosekunden (fs) bewegen, während Me4P[Pt(dmit)2]2 mit Laserlicht vom isolierenden in den metallisch leitenden Zustand umgeschaltet wird. In der Illustration links ist die anfängliche Struktur dargestellt: grau – Platin, schwarz – Kohlenstoff, gelb – Schwefel.

Foto: Science 2015/MPI für Struktur und Dynamik der Materie

Es dürfte der Traum eines jeden Chemikers sein, den rasend schnellen Strukturänderungen im Molekül zuzuschauen. Nun ist der Chemikertraum Wirklichkeit geworden. Ein internationales Forscherteam, an dem auch Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) in Hamburg beteiligt waren, hat eine Art Molekülkamera konstruiert. Mit dieser Kamera können die Forscher detailliert und in Zeitlupe beobachten, wie sich Atome bei einem molekularen Übergang in einem komplexen Material bewegen.

Femtosekunde hat 14 Nullen hinter dem Komma

Das ist nicht trivial, denn die Atombewegungen laufen in einer Zeitspanne ab, die das Licht braucht, um den Durchmesser eines Haares zu durchqueren. Die Forscher messen diese Zeitspanne in Femtosekunden.

Top Stellenangebote

Zur Jobbörse
Stadtbetrieb Wetter (Ruhr)-Firmenlogo
Bauingenieur/in (m/w/d) Fachrichtung Tiefbau / Straßenbau Stadtbetrieb Wetter (Ruhr)
Wetter (Ruhr) Zum Job 
Stadtwerke München GmbH-Firmenlogo
Brandschutzbeauftragte*r mit Zusatzfunktionen Tram (m/w/d) Stadtwerke München GmbH
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Planungsingenieur (w/m/d) Streckenplanung Die Autobahn GmbH des Bundes
Uwe Wenzel WW-Personalkonzepte e.K.-Firmenlogo
Entwicklungsingenieur (m/w/d) Wärmepumpensysteme und Regelungen Uwe Wenzel WW-Personalkonzepte e.K.
Großraum Hamburg Zum Job 
Landeshauptstadt München-Firmenlogo
Verkehrsingenieur*innen für die Verkehrswende (w/m/d) Landeshauptstadt München
München Zum Job 
Framatome-Firmenlogo
Ingenieur (m/w/d) für nukleare Entsorgung Framatome
Karlstein am Main, Erlangen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur als Bauwerksprüfer (w/m/d) Die Autobahn GmbH des Bundes
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektingenieurin / Projektingenieur (w/m/d) Verfahrenstechnik Berliner Stadtreinigungsbetriebe (BSR)
Technische Universität Graz-Firmenlogo
Universitätsprofessur für Nachhaltige Antriebssysteme und angewandte Thermodynamik (m/w/d) Technische Universität Graz
Graz (Österreich) Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektingenieurin / Projektingenieur (w/m/d) Elektrotechnik Berliner Stadtreinigungsbetriebe (BSR)
Lübeck Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
(Umwelt-)Ingenieur (w/m/d) für Boden, Abfall, Altlasten und Georisiken Die Autobahn GmbH des Bundes
Nürnberg Zum Job 
Fuest Familienstiftung-Firmenlogo
Bauzeichner, Bautechniker oder Innenarchitekt (m/w/d) Fuest Familienstiftung
Timm Technology GmbH-Firmenlogo
Sales Manager / Vertriebsingenieur (m/w/d) Timm Technology GmbH
Reinbek Zum Job 
Caljan GmbH-Firmenlogo
Maschinenbauingenieur / Konstrukteur Sondermaschinenbau (m/w/d) Caljan GmbH
Halle (Westfalen) Zum Job 
Stadtwerke München GmbH-Firmenlogo
(Senior) Projektmanager*in Niederspannung (m/w/d) Stadtwerke München GmbH
München Zum Job 
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Ingenieur* Produktmanagement für Navigationsdienste DFS Deutsche Flugsicherung GmbH
Langen (Hessen) Zum Job 
VAHLE-Firmenlogo
Ingenieur Automatisierungs- und Steuerungstechnik (m/w/d) VAHLE
Kamen, Großraum Dortmund Zum Job 
Grünecker Patent- und Rechtsanwälte PartG mbB-Firmenlogo
Patentingenieur (m/w/d) der Fachrichtung Physik und/oder Elektrotechnik mit der Möglichkeit zur Ausbildung zum "European Patent Attorney (m/w/d/)" Grünecker Patent- und Rechtsanwälte PartG mbB
München Zum Job 
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Flugsicherungsingenieur (w/m/d) DFS Deutsche Flugsicherung GmbH
Grünecker Patent- und Rechtsanwälte PartG mbB-Firmenlogo
Europäischer Patentanwalt (m/w/d) der Fachrichtung Physik, Informatik, Elektrotechnik oder Nachrichtentechnik Grünecker Patent- und Rechtsanwälte PartG mbB
München Zum Job 

Stehen bei einer Millisekunde zwei Nullen hinter dem Komma, so sind es bei einer Femtosekunde 14 Nullen. Macht 0,000000000000001 s. Diese extrem kurze Zeitspanne und die geforderte Auflösung stellte das Forscherteam um den Chemieprofessor und Direktor des MPSD, Dwayne Miller, vor enorme Herausforderungen.

Grenzauflösung von einem Zehntelnanometer

Sie mussten ihre Molekülkamera mit einer Grenzauflösung von mindestens einem Zehntelnanometer ausstatten. „Würde man einen Apfel bis auf den Durchmesser der Mondumlaufbahn vergrößern, dann wäre eines seiner Atome so groß wie der ursprüngliche Apfel“, veranschaulicht Stuart Hayes das Problem. Der Forscher aus Schottland leitet in Millers Abteilung das Team, dem nun das erste Video eines chemischen Atomballetts gelungen ist.

Filmkamera mit Femtosekunden-Elektronenblitz

Millers Team benutzt für die Filmkamera einen ultrakurzen Femtosekunden-Elektronenblitz. Elektronen können die Lage der Atome in Molekülen direkt abbilden. Diese Elektronenblitze lassen sich zudem ganz einfach und in kompakten Geräten erzeugen. „Das sind echte Tischexperimente“, sagt Stuart Hayes. „Trotzdem sind unsere Elektronenkanonen so hell, dass sie die molekulare Struktur in einem einzigen Schuss einfangen können“, ergänzt Miller. Vorhandene physikalische Probleme mit Elektronenblitzen lösten die Forscher, indem sie die Flugzeit der Elektronenwolke verkürzten, die Elektronenzahl optimierten und eine Art Optik für Elektronen bauten.

Standbild eines Kristalls in Bewegung: Dazu haben die  Forscher eine Probe des organischen Salzes EDO-TTF mit Elektronen beschossen. Eine Vielzahl dieser Bilder werden dann zu einem Film zusammengesetzt.

Standbild eines Kristalls in Bewegung: Dazu haben die  Forscher eine Probe des organischen Salzes EDO-TTF mit Elektronen beschossen. Eine Vielzahl dieser Bilder werden dann zu einem Film zusammengesetzt.

Quelle: Lai Chung (Nelson) Liu/University of Toronto

Mit ihrer Molekülkamera haben die Forscher nun ein neues Material untersucht, das am japanischen RIKEN-Forschungsinstitut entwickelt wurde. Dieses Material kann durch Temperatur oder Druck in seinen elektrischen Eigenschaften zwischen isolieren und metallisch leitend umgeschaltet werden.

Japanische Forscher fanden kürzlich heraus, dass sich dieser Phasenübergang gleichermaßen durch Laserlicht erzeugen lässt. Und genau bei diesem Phasenübergang haben Miller und sein Team nun in Zeitlupe zugeschaut.

„Wir sehen Atome in ihrer Bewegung ganz klar“

„Wir sehen diese Atome in ihrer Bewegung ganz klar“, schwärmt Miller, „wie Sterne am Nachthimmel.“ Sie konnten erstmals sehen, dass nur bestimmte Atomgruppen im Kollektiv wenige, koordinierte Schlüsselbewegungen machen, um die Materialeigenschaften zu verändern. So sind die zigtausend Möglichkeiten auf ein paar wenige, einfache und grundlegende Tanzfiguren des atomaren Balletts reduziert.

Miller benutzt ein Analogiebild: Er vergleicht das Spielfeld der Möglichkeiten einer chemischen Reaktion mit Tausenden von involvierten Atomen mit einer imposanten Berglandschaft. Dabei repräsentieren die Täler in dieser Landschaft verschiedene, stabile Molekülstrukturen. Bei einer Strukturänderung muss die zu ändernde Struktur über die Gipfel der Berge hinüber in eines der Nachbartäler. „Dabei reduzieren sich die vielen Möglichkeiten auf einen Passpfad, der am besten zugänglich ist“, erklärt Hayes.

 

Ein Beitrag von:

  • Detlef Stoller

    Detlef Stoller ist Diplom-Photoingenieur. Er ist Fachjournalist für Umweltfragen und schreibt für verschiedene Printmagazine, Online-Medien und TV-Formate.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.