Spezielle Oberflächenstruktur 09.02.2015, 08:51 Uhr

Besonders gut verträglich: Mit bakterieller Zellulose beschichtete Implantate

Einer Forschergruppe in Zürich ist es gelungen, bakterielle Zellulose mit einer speziellen Oberflächenstruktur herzustellen. Wenn künstliche Implantate mit dieser Zellulose umhüllt werden, ist das für den Körper besonders gut verträglich. Es kommt zu weniger Entzündungen und Abstoßungsreaktionen.

Nach Operationen, bei denen künstliche Implantate wie Herzschrittmacher oder Herzpumpen eingesetzt werden, kommt es oft zu Komplikationen, weil der menschliche Körper die fremden Objekte abwehrt. An der ETH Zürich wurde jetzt eine Methode entwickelt, um besonders gut verträgliche Beschichtungen für Implantate herzustellen.

Nach Operationen, bei denen künstliche Implantate wie Herzschrittmacher oder Herzpumpen eingesetzt werden, kommt es oft zu Komplikationen, weil der menschliche Körper die fremden Objekte abwehrt. An der ETH Zürich wurde jetzt eine Methode entwickelt, um besonders gut verträgliche Beschichtungen für Implantate herzustellen.

Foto: dpa

Mit künstlichen Implantaten wie einem Herzschrittmacher oder einer Herzpumpe kommt es oft zu Komplikationen, weil der menschliche Körper sie als fremde Objekte bekämpft und schlimmstenfalls abstößt. Von der Eidgenössischen Technischen Hochschule ETH in Zürich kommen jetzt gute Nachrichten, denn dort wurde eine einfache Methode entwickelt, um besonders gut verträgliche Beschichtungen für Implantate herzustellen.

Vielversprechendes Material: Von Bakterien hergestellte Zellulose

Bereits seit längerem ist bekannt, dass Zellen besser mit strukturierten als mit glatten Oberflächen interagieren, weil sie sich besser an diese heften können. Nun hat ein Forschungsteam um den ETH-Professor Dimos Poulikakos und Aldo Ferrari, Gruppenleiter am Labor für Thermodynamik in Neuen Technologien, dieses Wissen genutzt und es auf einem der vielversprechendsten Materialien in der Medizin – der Bakterienzellulose – angewendet.

Top Stellenangebote

Zur Jobbörse
Albert Handtmann Elteka GmbH & Co. KG-Firmenlogo
Laboringenieur (m/w/d) Albert Handtmann Elteka GmbH & Co. KG
Biberach an der Riß Zum Job 
Ruhr-Universität Bochum-Firmenlogo
Dipl.-Ingenieur*in Fachrichtung Elektrotechnik (FH) oder vergleichbar (m/w/d) Ruhr-Universität Bochum
Bundeswehr-Firmenlogo
Ingenieur/in (m/w/d) Informatik/Elektrotechnik Bundeswehr
keine Angabe Zum Job 
Stadtwerke Norderstedt-Firmenlogo
Planungsingenieur:in als Teamleiter:in (m/w/d) Infrastrukturausbau Stadtwerke Norderstedt
Norderstedt Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin/Ingenieur (m/w/d) Bundeswehr
keine Angabe Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Abteilungsleitung (w/m/d) Bau, Baugrund- und Baustoffprüfung Die Autobahn GmbH des Bundes
Klinger und Partner GmbH-Firmenlogo
Projektleiter Tiefbau und Straße (m/w/d) Klinger und Partner GmbH
Stuttgart Zum Job 
SALT AND PEPPER Technology GmbH & Co. KG-Firmenlogo
System Engineer für Entwicklungsprojekte (all genders) SALT AND PEPPER Technology GmbH & Co. KG
Hamburg Zum Job 
Stuttgart Netze GmbH-Firmenlogo
Ingenieur Energietechnik Smart Grid (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
SALT AND PEPPER Technology GmbH & Co. KG-Firmenlogo
Entwicklungsingenieur Hardware (all genders) SALT AND PEPPER Technology GmbH & Co. KG
Hamburg Zum Job 
SALT AND PEPPER Technology GmbH & Co. KG-Firmenlogo
Testingenieur Software für Entwicklungsprojekte (all genders) SALT AND PEPPER Technology GmbH & Co. KG
Hamburg Zum Job 
Panasonic Industrial DevicesEurope GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) in der industriellen Hardwareentwicklung Panasonic Industrial DevicesEurope GmbH
Lüneburg Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektingenieurin / Projektingenieur (w/m/d) Bauwesen Deponietechnik Berliner Stadtreinigungsbetriebe (BSR)
Berlin, Homeoffice möglich Zum Job 
Stadtwerke Görlitz AG-Firmenlogo
Referent Netztechnik (m/w/d) Stadtwerke Görlitz AG
Görlitz Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Architekt / Ingenieur im Hochbau (w/m/d) Die Autobahn GmbH des Bundes
München Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Mitarbeiter für die Straßenbaubehörde (w/m/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
Kempten (Allgäu) Zum Job 
HAWK Hochschule für angewandte Wissenschaft und Kunst-Firmenlogo
Leitung (m/w/d) des Gebäudemanagements HAWK Hochschule für angewandte Wissenschaft und Kunst
Hildesheim Zum Job 
WSW Wuppertaler Stadtwerke GmbH-Firmenlogo
Ingenieur (m/w/d) Planung / Bau Wärme WSW Wuppertaler Stadtwerke GmbH
Wuppertal Zum Job 
WSW Wuppertaler Stadtwerke GmbH-Firmenlogo
Leitender Ingenieur (m/w/d) Planung / Bau Wärme WSW Wuppertaler Stadtwerke GmbH
Wuppertal Zum Job 
WSW Wuppertaler Stadtwerke GmbH-Firmenlogo
Ingenieur (m/w/d) Planung / Bau Wärme WSW Wuppertaler Stadtwerke GmbH
Wuppertal Zum Job 

Zellulose ist der Hauptbestandteil von pflanzlichen Zellwänden und gibt der Pflanze durch ihre Struktur in reißfesten Fasern die nötige Stabilität. Die Zellulose kann aber auch von bestimmten Bakterien außerhalb der Zellen gebildet werden. Dann entsteht eine sehr feine Netzwerkstruktur, die sich im Vergleich zur pflanzlichen Zellulose durch eine besondere Reinheit auszeichnet.

Feuchte Bakterienzellulose ist flexibel und stabil zugleich

Die Bakterienzellulose ist außerdem im feuchten Zustand sehr flexibel und mechanisch stabil. Die medizinische Forschung hat das Biopolymer längst für zahlreiche Anwendungen entdeckt, denn es ist für den menschlichen Körper besonders gut verträglich. So werden zum Beispiel bereits künstliche Blutgefäße oder Knorpelersatz daraus hergestellt und auch für Wundverbände ist das Material interessant.

Die Bakterien bauten eine Zelluloseschicht nach vorgegebenem Muster

Um der bakteriellen Zellulose eine spezifische Oberflächenstruktur zu geben, damit die Körperzellen besser mit dem Material interagieren, nutzte das Forscherteam eine Silikonform mit einem dreidimensionalen Linienraster im Mikrometerbereich. Diese Form ließen sie auf der Oberfläche einer Nährlösung schwimmen, in der die zelluloseproduzierenden Bakterien wuchsen.

Eine Beschichtung aus mikrostrukturierter Zellulose - wie der dargestellten Schicht mit Linienraster - könnte Implantate verträglicher machen.

Eine Beschichtung aus mikrostrukturierter Zellulose – wie der dargestellten Schicht mit Linienraster – könnte Implantate verträglicher machen.

Quelle: Ben John Newton

Die Bakterien bauten am Übergang zwischen Flüssigkeit und Luft ein dichtes Netz aus Zellulosesträngen auf. In Anwesenheit der Silikonform passten sie sich an diese an und produzierten eine Zelluloseschicht samt dem Negativabdruck des Linienrasters.

Menschliche Zellen können Fasern erkennen

Das Linienraster brachte die Bakterien außerdem dazu, die Zellulosestränge vermehrt in der ungefähren Ausrichtung des Rasters herzustellen. „Menschliche Zellen haben grundsätzlich die Fähigkeit, Fasern zu erkennen, zum Beispiel das körpereigene Kollagen, ein Bestandteil des Bindegewebes“, erklärt Aldo Ferrari. Die Zellulosestränge und das Rastermuster böten Zellen somit eine Orientierung entlang von vorgegebenen Bahnen, die sie erspüren. „Für Wundpflaster ist das von großem Vorteil. So könnten Hautzellen eine Wunde besser verschließen, wenn sie sich entlang solch strukturierter Zellulose bewegen.“

Zellulose birgt spezielle Nachricht für die darauf wachsende Zelle

Es sei nun möglich, der Zelluloseoberfläche schon bei ihrer Herstellung eine Nachricht für die später darauf wachsenden Zellen mitzugeben, erklärt Poulikakos. „Man kann sich das wie Blindenschrift vorstellen.“ So lasse sich die optimale Nachricht passend für die spätere Anwendung auf der Oberfläche anbringen. Solche Strukturen helfen auch, Abstoßungsreaktionen des Körpers gegen das künstliche Implantat zu reduzieren. In Studien mit Mäusen verglichen die Forscher glatte mit strukturierter Zellulose und stellten fest, dass Mäuse, denen die strukturierte Zellulose unter der Haut eingesetzt worden war, signifikant weniger Anzeichen einer Entzündung aufwiesen.

Diese vielversprechenden ersten Ergebnisse verfolgen die Wissenschaftler nun weiter, um das Material unter komplexeren Bedingungen zu testen. Zum Beispiel könnten die Forscher für künstliche Blutgefäße die Zelluloseoberfläche so strukturieren, dass der Blutfluss optimiert wird und solche Gefäße weniger leicht verstopfen.

Weil Mikroben an Implantaten Infektionen auslösen haben Materialwissenschaftler der Universität Jena (FSU) mit nanorauen Titanoberflächen experimentiert, auf denen sich Mikroben unwohl fühlen sollen.

 

Ein Beitrag von:

  • Gudrun von Schoenebeck

    Gudrun von Schoenebeck

    Gudrun von Schoenebeck ist seit 2001 journalistisch unterwegs in Print- und Online-Medien. Neben Architektur, Kunst und Design hat sie sich vor allem das spannende Gebiet der Raumfahrt erschlossen.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.