5 % Leistungssteigerung 06.06.2014, 09:55 Uhr

Halbierte Solarzellen sind effizienter und liefern mehr Strom

Halbiert man die Größe von Solarzellen, steigt ihre Effizienz: Auf diesen simplen und effektiven Trick kamen Fraunhofer-Forscher aus Halle. Ein Modul mit 144 Halbzellen liefert demnach fünf Prozent mehr Strom als eines mit 72 Vollzellen. Für große Solarparks könnte dieser Trick ein Goldschatz sein.  

Ein Nanosekundenlaser ritzt die Rückseite der Solarzellen ein, sodass eine Sollbruchstelle entsteht. Anschließend werden die halbierten Zellen automatisch verlötet. 

Ein Nanosekundenlaser ritzt die Rückseite der Solarzellen ein, sodass eine Sollbruchstelle entsteht. Anschließend werden die halbierten Zellen automatisch verlötet. 

Foto: Fraunhofer CSB

Der Wirkungsgrad der Solarzellen steigt immer weiter. Wenn sie allerdings in Module gepackt, verdrahtet, mit eine Glasscheibe abgedeckt und die Ränder schließlich abgedichtet werden, geht eine Menge an Leistung verloren. Wegen der Kontaktierung werden kleine Flächen von der Sonne nicht mehr erreicht, und im Inneren der relativ großen Zellen gibt es relativ große elektrische Widerstände.

Top Stellenangebote

Zur Jobbörse
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
MB Global Engineering GmbH & Co. KG-Firmenlogo
Projektleiter Elektrotechnik (m/w/d) MB Global Engineering GmbH & Co. KG
Darmstadt Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Projektingenieur (m/w/d) im Bereich Maschinen- und Anlagentechnik Nitto Advanced Film Gronau GmbH
Städtische Wohnungsgesellschaft Eisenach mbH-Firmenlogo
Bauingenieur Hochbau / Architekt (m/w/d) Städtische Wohnungsgesellschaft Eisenach mbH
Eisenach Zum Job 
Dorsch Gruppe-Firmenlogo
Projektleiter (m/w/d) Tragwerksplanung mit Perspektive auf Fachbereichsleitung Dorsch Gruppe
Wiesbaden Zum Job 
IT-Consult Halle GmbH-Firmenlogo
Trainee SAP HCM / Personalwirtschaft (m/w/d) IT-Consult Halle GmbH
Halle (Saale) Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Projektingenieur für Brückenbau / Tunnelbau / Ingenieurbau (w/m/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
München Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Dipl. Ing. (FH) (w/m/d) der Fachrichtung Wasserwirtschaft, Umwelt, Landespflege oder vergleichbar Regierungspräsidium Freiburg
Freiburg im Breisgau Zum Job 
Clariant SE-Firmenlogo
Techniker* für Automatisierungstechnik Clariant SE
Oberhausen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieurin oder Bauingenieur in der Schlichtungsstelle (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Big Dutchman International GmbH-Firmenlogo
Ingenieur / Techniker / Meister (m/w/d) Big Dutchman International GmbH
BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG-Firmenlogo
Entwickler / Konstrukteur für die Verdichterentwicklung (m/w/x) BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG
Großenhain Zum Job 
Griesemann Gruppe-Firmenlogo
Ingenieur Verfahrenstechnik / Prozessingenieur (m/w/d) Griesemann Gruppe
Wesseling, Köln Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Fachingenieur Netzbetrieb Strom (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 
Hamburger Wasser-Firmenlogo
Ingenieur/Referent (m/w/d) Vergabe Ingenieur-/ Bauleistungen Hamburger Wasser
Hamburg Zum Job 
Möller Medical GmbH-Firmenlogo
Industrial Engineer (m/w/d) Möller Medical GmbH
RWE Technology International GmbH-Firmenlogo
Projektmanager (m/w/d) Anlagenrückbau RWE Technology International GmbH
MÜNZING CHEMIE GmbH-Firmenlogo
Prozessoptimierer (m/w/d) für die chemische Industrie MÜNZING CHEMIE GmbH
Elsteraue Zum Job 
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
COO (m/w/d) über ifp | Executive Search. Management Diagnostik.
Norddeutschland Zum Job 
JOSEPH VÖGELE AG-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik Hardwareentwicklung/Elektrokonstruktion JOSEPH VÖGELE AG
Ludwigshafen am Rhein Zum Job 

Halbierung der Solarzellen führt zu fünfprozentiger Leistungssteigerung

Groß ist nicht immer gut, sagten sich Wissenschaftler am Fraunhofer-Center für Silizium-Photovoltaik (CSP) in Halle an der Saale. Ihre Kalkulation: Wenn die Zellen halbiert werden, reduziert sich in gleichem Maße die Stromstärke in den Zellen selbst und in den Drähten, die sie miteinander verbinden. Bei gleichbleibendem elektrischen Widerstand sinken parallel dazu die Verluste. Der Effekt lässt sich noch verbessern, indem besonders widerstandsarme Werkstoffe für die Verdrahtung eingesetzt werden.

Ein Servicetechniker arbeitet in Ronneburg an den Solarmodulen in einem Solarpark, errichtet vom Unternehmen juwi Solar. Gerade bei solchen Großanlagen würde sich eine fünfprozentige Leistungssteigerung pro Modul auszahlen. 

Ein Servicetechniker arbeitet in Ronneburg an den Solarmodulen in einem Solarpark, errichtet vom Unternehmen juwi Solar. Gerade bei solchen Großanlagen würde sich eine fünfprozentige Leistungssteigerung pro Modul auszahlen. 

Quelle: dpa/Martin Schutt

Tatsächlich erreichten die Haller Forscher ihr Ziel: 330 Watt liefern die 144 Halbzellen in einem Modul, das sie im Juni 2014 auf der Fachmesse Intersolar in München vorstellen. Ein Referenzmodul mit 72 Vollzellen kommt nur auf 315 Watt. Damit verbuchen die Haller eine Leistungssteigerung um fast fünf Prozent.

Laser ritzt Solarzellen an

„Im nächsten Schritt werden wir den Prozess der Zellteilung weiter verbessern, um elektrische und mechanische Schädigungen beim Teilungsprozess besser zu verstehen, damit zu minimieren und die Umsetzung in die Fertigung voranzutreiben“, sagt Jens Schneider, Leiter der Modultechnologie am CSP. Tatsächlich nehmen die Zellen bei der Halbierung Schaden. Sie werden auf der Rückseite mit einem extrem schnell gepulsten Nanosekundenlaser angeritzt – ähnlich wie es Glaser mit dem Glasschneider machen. Nach deren Vorbild wird die Zelle dann einfach auseinandergebrochen. CSP-Chef Professor Jörg Bagdad ist sich sicher, dass die Industrie diese Technik schnell übernimmt. Immerhin reduziert sie unter anderem den Platzbedarf für Solarkraftwerke.

Zellen werden in Module gepackt, um sie vor Umwelteinflüssen zu schützen und die Montage zu erleichtern. Gängige Module bestehen aus 72 Zellen, die jeweils zwei Ausgänge für den produzierten Strom haben. Diese werden im Modul miteinander verdrahtet, sodass sich die 144 Ausgänge auf zwei reduzieren.

Das CSP ist eine Gemeinschaftseinrichtung des Fraunhofer-Instituts für Solare Energiesysteme in Freiburg und des Fraunhofer-Instituts für Werkstoffmechanik in Halle an der Saale.

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.