Simulation im Labor 17.12.2013, 13:22 Uhr

Mini-Meteorite explodieren mit 30.000 km/h auf Sandsteinblock

Um mehr über die Entstehung der Galaxis zu erfahren, schießen Wissenschaftler im Labor Mini-Meteoriten auf Sandsteinblöcke. Die anschließende Ultraschall-Untersuchung zeigt: Unterirdische Schäden sind weitaus größer, als bisher bei natürlichen Kratern dokumentiert. 

Für das Auge sichtbar ist ein Krater, der sechs Zentimeter breit und einen Zentimeter tief ist. Doch der Ultraschall-Tomograph verrät: Die Zone, in der im Inneren des Sandsteinblocks Risse verlaufen, ist achtmal größer. 

Für das Auge sichtbar ist ein Krater, der sechs Zentimeter breit und einen Zentimeter tief ist. Doch der Ultraschall-Tomograph verrät: Die Zone, in der im Inneren des Sandsteinblocks Risse verlaufen, ist achtmal größer. 

Foto: Technische Universität München

Kollisionen von Himmelskörpern zählen zu den wichtigsten Entstehungsprozessen unserer Galaxie. Gerade Meteoritenkrater auf der Erde sind Millionen Jahre alte Zeitzeugen und somit für Wissenschaftler eine potentielle Goldgrube. Gäbe es da nicht ein Problem: „Bei natürlichen Kratern können wir oft nur Vermutungen darüber anstellen, welche Schäden von dem Meteoriteneinschlag selbst stammen und welche Risse nachträglich durch die Verwitterung des Gesteins entstanden sind“, erklärt Christian Große. Der Professor für Zerstörungsfreie Prüfung an der Technischen Universität München stellt deswegen im Labor Meteoriteneinschläge nach, um mehr über das Schadensverhalten zu erfahren.

Mini-Meteorit trifft mit 30.000 km/h auf Sandsteinblock

Er und sein Team aus Geowissenschaftlern, Physikern und Ingenieuren schießen dabei eine ein Zentimeter große Metallkugel mit 30.000 km/h auf einen Sandsteinblock. Dadurch entsteht ein Mini-Krater, der sechs Zentimeter breit und einen Zentimeter tief ist. Doch die Forscher trauen wortwörtlich ihren Augen nicht. Sie vermuten, dass der Schaden im Inneren des Umgebungsbereiches noch weitaus größer ausfällt.

Top Stellenangebote

Zur Jobbörse
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
MB Global Engineering GmbH & Co. KG-Firmenlogo
Projektleiter Elektrotechnik (m/w/d) MB Global Engineering GmbH & Co. KG
Darmstadt Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Projektingenieur (m/w/d) im Bereich Maschinen- und Anlagentechnik Nitto Advanced Film Gronau GmbH
Städtische Wohnungsgesellschaft Eisenach mbH-Firmenlogo
Bauingenieur Hochbau / Architekt (m/w/d) Städtische Wohnungsgesellschaft Eisenach mbH
Eisenach Zum Job 
Dorsch Gruppe-Firmenlogo
Projektleiter (m/w/d) Tragwerksplanung mit Perspektive auf Fachbereichsleitung Dorsch Gruppe
Wiesbaden Zum Job 
IT-Consult Halle GmbH-Firmenlogo
Trainee SAP HCM / Personalwirtschaft (m/w/d) IT-Consult Halle GmbH
Halle (Saale) Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Projektingenieur für Brückenbau / Tunnelbau / Ingenieurbau (w/m/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
München Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Dipl. Ing. (FH) (w/m/d) der Fachrichtung Wasserwirtschaft, Umwelt, Landespflege oder vergleichbar Regierungspräsidium Freiburg
Freiburg im Breisgau Zum Job 
Clariant SE-Firmenlogo
Techniker* für Automatisierungstechnik Clariant SE
Oberhausen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieurin oder Bauingenieur in der Schlichtungsstelle (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Big Dutchman International GmbH-Firmenlogo
Ingenieur / Techniker / Meister (m/w/d) Big Dutchman International GmbH
BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG-Firmenlogo
Entwickler / Konstrukteur für die Verdichterentwicklung (m/w/x) BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG
Großenhain Zum Job 
Griesemann Gruppe-Firmenlogo
Ingenieur Verfahrenstechnik / Prozessingenieur (m/w/d) Griesemann Gruppe
Wesseling, Köln Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Fachingenieur Netzbetrieb Strom (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 
Hamburger Wasser-Firmenlogo
Ingenieur/Referent (m/w/d) Vergabe Ingenieur-/ Bauleistungen Hamburger Wasser
Hamburg Zum Job 
Möller Medical GmbH-Firmenlogo
Industrial Engineer (m/w/d) Möller Medical GmbH
RWE Technology International GmbH-Firmenlogo
Projektmanager (m/w/d) Anlagenrückbau RWE Technology International GmbH
MÜNZING CHEMIE GmbH-Firmenlogo
Prozessoptimierer (m/w/d) für die chemische Industrie MÜNZING CHEMIE GmbH
Elsteraue Zum Job 
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
COO (m/w/d) über ifp | Executive Search. Management Diagnostik.
Norddeutschland Zum Job 
JOSEPH VÖGELE AG-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik Hardwareentwicklung/Elektrokonstruktion JOSEPH VÖGELE AG
Ludwigshafen am Rhein Zum Job 

Untersuchung des Kraters im Ultraschall-Tomographen

Mit dem Tomographen können sie Grad und Ausbreitung verborgener Risse im Gestein erfassen, ohne den experimentellen Krater zu beschädigen. Das Gerät schickt dafür ein akustisches Signal mit einer bestimmten Frequenz durch den Sandsteinblock. In der Luft von Rissen und Spalten bewegt sich der Schall mit rund 300 Metern pro Sekunde zehnmal langsamer als im Stein. Dadurch entstehen an diesen Stellen Signale mit größeren Amplituden.

Ergebnisse des Ultraschalls nach dem Einschlag eines Meteroiten-Modells. Rechts: Die roten Linien zeigen Risse im Gestein. Links: numerisches Modell. Der rote Bereich zeigt poröses Gestein. 

Ergebnisse des Ultraschalls nach dem Einschlag eines Meteroiten-Modells. Rechts: Die roten Linien zeigen Risse im Gestein. Links: numerisches Modell. Der rote Bereich zeigt poröses Gestein.

Quelle: Museum für Naturkunde Berlin / MEMIN

Die Wissenschaftler können nun mit diesen Signalen eine Karte anfertigen, die den ganzen Schaden des Mini-Meteoriten darstellt. Und sie staunen nicht schlecht. Denn bis zu achtmal breiter als der eigentliche Krater ist die Zone, in der unterirdisch Risse und Spalten verlaufen. „Die Kollision von Himmelskörpern gehört zu den wichtigsten Prozessen bei der Entstehung unserer Galaxie. Mit den Kraterexperimenten können wir auch ihre Wirkung auf die Erde besser abschätzen.“

Experimente mit Schussenergie und Einschlagswinkel

Mit Hilfe des Tomographen können die Wissenschaftler auch untersuchen, wie sich Größe, Energie und Einschlagswinkel des Meteoriten auf die Beschaffenheit der unterirdischen Schädigung auswirken. „Bei einem senkrechten Aufprall können wir beispielsweise eine halbkugelförmige Schädigungszone erfassen“, sagt Große. „Tritt der Meteorit schräg auf, kann das anders aussehen.“ Im nächsten Schritt werden die Forscher deshalb Schussenergie und Einschlagswinkel der Mini-Meteorite verändern – und damit auch den unterirdischen Teil der Krater.

Die Forschergruppe um Professor Große heißt Memin, eine Abkürzung für Multidisciplinary Experimental and Modeling Impact Crater Research Network. Beteiligt sind auch das Museum für Naturkunde in Berlin, das Fraunhofer Institut für Kurzzeitdynamik Freiburg, die Universität Freiburg, das Geoforschungszentrum Potsdam, die Technische Universität München, die Universität Münster und die University of California in Berkeley. Die Deutsche Forschungsgemeinschaft (DFG) finanziert das Projekt bis mindestens 2016.

 

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitete während seines Studiums der Kommunikationsforschung bei verschiedenen Tageszeitungen. 2012 machte er sich als Journalist selbstständig. Zu seinen Themen gehören Automatisierungstechnik, IT und Industrie 4.0.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.