Vorbild Natur 15.10.2013, 14:03 Uhr

Extrem haftende Klebefolie: Geometrie des Kontaktes entscheidend

Geckos können glatte Wände hochlaufen, ohne herunterzufallen. Dabei kann sich das Tier auf ein Zusammenspiel zweier Kräfte verlassen, die seinen Milliarden feinster Härchen an den Füßen eine extreme Haftung verleihen. Kieler Forscher untersuchen die Gecko-Härchen ganz genau. Ziel ist es, ein durch farbiges Licht schaltbares Haftungssystem zu entwickeln.

Die Nanohärchen am Gecko-Fuß besitzen eine enorme Haftkraft. 

Die Nanohärchen am Gecko-Fuß besitzen eine enorme Haftkraft. 

Foto: S. Gorb/MPI für Metallforschung

Ein einzelnes dieser winzigen Gecko-Härchen kann ein Gewicht von 100 Nanonewton tragen. Dafür sorgen zwei Kräfte: Die van der Waals-Kraft, die auch zwischenmolekulare Kraft genannt wird, weil es dabei um die Wechselwirkung zwischen Atomen oder Molekülen geht. Die zweite Kraft, die dem Gecko seine Kunststücke ermöglicht, ist die Kapillarkraft, die zwischen hydrophilen Materialien in feuchter Umgebung wirkt. Bei dem typischen Durchmesser der Gecko-Härchen von einem halben Mikrometer sind die van der Waal-Kräfte und die Kapillarkräfte etwa gleich groß. Die Millionen von Gecko-Härchen tragen ein Gewicht von zehn Newton pro Quadratzentimeter. Eine mit Geckohärchen bestückte Briefmarke dürfte demnach ausreichen, um einen Ziegelstein zu tragen.

Pilzkopfförmige Haftgeometrie sorgt für gute Klebeeigenschaften

Forscher der Christian-Albrechts-Universität zu Kiel (CAU) konnten jetzt das Erfolgsmodell natürlicher Haftung dingfest machen: Es ist die Geometrie des Kontaktes, die für gute Haftung sorgt. Der Physikingenieur Lars Heepe, der Biophysiker Alexander Kovalev, der theoretische Physiker Alexander Filippov und der Biologe Stanislav Gorb studierten mit dem sogenannten Gecko-Tape, eine an der Universität Kiel in Zusammenarbeit mit der Gottlieb Binder GmbH entwickelte Haftfolie, die Geometrie der Haftelemente.

Top Stellenangebote

Zur Jobbörse
FH Münster-Firmenlogo
Mitarbeiter/in (w/m/d) zur Koordination der Schulkontakte FH Münster
Steinfurt Zum Job 
über ifp l Personalberatung Managementdiagnostik-Firmenlogo
Stellvertretende Leitung Bau- und Gebäudetechnik (m/w/d) über ifp l Personalberatung Managementdiagnostik
Rhein-Main-Gebiet Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) Brückenprüfung Die Autobahn GmbH des Bundes
TAUW GmbH-Firmenlogo
Projektingenieur:in (m/w/d) Hydro(geo)logische Modellierungen TAUW GmbH
verschiedene Standorte Zum Job 
PNE AG-Firmenlogo
Experte Technischer Einkauf für Windenergieanlagen (m/w/d) PNE AG
Hamburg, Husum, Cuxhaven Zum Job 
Stadtwerke München GmbH-Firmenlogo
Instandhaltungsmanager*in (m/w/d) Stadtwerke München GmbH
München Zum Job 
Rittal GmbH & Co. KG-Firmenlogo
Maschinenbauingenieur / Prüfingenieur (m/w/d) Dynamik / Schwingungstechnik Rittal GmbH & Co. KG
Herborn Zum Job 
Fraunhofer-Institut für Angewandte Festkörperphysik IAF-Firmenlogo
Wissenschaftler (m/w/d) - angewandte NV-Magnetometrie und Laserschwellen-Magnetometer Fraunhofer-Institut für Angewandte Festkörperphysik IAF
Freiburg im Breisgau Zum Job 
Deutsche Rentenversicherung Bund-Firmenlogo
Teamleiter*in Bauprojekte Elektrotechnik (m/w/div) Deutsche Rentenversicherung Bund
Stadtwerke Frankenthal GmbH-Firmenlogo
Energieberater (m/w/d) Stadtwerke Frankenthal GmbH
Frankenthal Zum Job 
Griesemann Gruppe-Firmenlogo
Lead Ingenieur Elektrotechnik / MSR (m/w/d) Griesemann Gruppe
Köln, Wesseling Zum Job 
Vita Zahnfabrik H. Rauter GmbH & Co. KG-Firmenlogo
Konstrukteurin / Konstrukteur Maschinen und Anlagen Vita Zahnfabrik H. Rauter GmbH & Co. KG
Bad Säckingen Zum Job 
PARI Pharma GmbH-Firmenlogo
Senior Projekt-/Entwicklungsingenieur (m/w/d) in der Konstruktion von Medizingeräten PARI Pharma GmbH
Gräfelfing Zum Job 
ABO Wind AG-Firmenlogo
Projektleiter (m/w/d) Umspannwerke 110kV für erneuerbare Energien ABO Wind AG
verschiedene Standorte Zum Job 
Berliner Wasserbetriebe-Firmenlogo
Bauingenieur:in Maßnahmenentwicklung Netze (w/m/d) Berliner Wasserbetriebe
Die Autobahn GmbH des Bundes-Firmenlogo
Abteilungsleitung (m/w/d) Umweltmanagement und Landschaftspflege Die Autobahn GmbH des Bundes
Residenzstadt Celle-Firmenlogo
Abteilungsleitung (d/m/w) für die Stadtplanung im Fachdienst Bauordnung Residenzstadt Celle
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) Verkehrsbeeinflussungsanlagen Die Autobahn GmbH des Bundes
Hamburg Zum Job 
VIVAVIS AG-Firmenlogo
Projektleiter (m/w/d) Angebotsmanagement VIVAVIS AG
Ettlingen, Berlin, Bochum, Koblenz Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur (w/m/d) Telematik-Infrastruktur Die Autobahn GmbH des Bundes
Frankfurt am Main Zum Job 
Rasterelektronenmikroskopische Aufnahmen von pilzkopfförmigen Haftstrukturen eines männlichen Blattkäfers (li.) und des Gecko®-Tapes (re.), dessen Haftelemente denen des Käfers nachempfunden sind. 

Rasterelektronenmikroskopische Aufnahmen von pilzkopfförmigen Haftstrukturen eines männlichen Blattkäfers (li.) und des Gecko®-Tapes (re.), dessen Haftelemente denen des Käfers nachempfunden sind.

Quelle: Stanislav N. Gorb

Deren mikroskopisch kleine Haftelemente sind den Füßen von Geckos und Blattkäfern nachempfunden, kleben sogar auf feuchten und rutschigen Untergründen, lassen sich immer wieder verwenden und rückstandsfrei wieder ablösen. Ergebnis: Es ist vor allem die pilzkopfförmige Haftgeometrie, die für die guten Klebeeigenschaften verantwortlich ist.

Natur setzt auf Pilzköpfe

Ausgangspunkt der Untersuchungen war die Erkenntnis, dass sich in der Natur sowohl auf der Nano-, der Mikro- und Makroskala diese pilzkopfförmige Geometrie bei den verschiedenen auf dem Land und im Wasser lebenden Organismen unabhängig voneinander entwickelt hat. Beispiele reichen dabei in der Nanoskala von der Haftung des Caulobacter crescentus an Oberflächen, über die pilzkopfförmigen Hafthaare einiger männlicher Blattkäfer im Mikrobereich bis hin zu Jungfernreben, die diese Grundgeometrie in der Makroskala ausgebildet haben, um gut zu haften. Und natürlich der Gecko als Haftkönig.

„Diese spezielle Kontaktgeometrie ist unabhängig voneinander entstanden. Das weist auf eine evolutionäre Anpassung der Organismen hin, die ihre Haftung immer weiter verbessert“, sagt Stanislav Gorb, Biologe am Zoologischen Institut der CAU. Um den Mechanismus zu verstehen, der diese Kontaktgeometrie so erfolgreich macht, haben die Forscher Hochgeschwindigkeitsaufnahmen des Ablösemoments gemacht. Mit 180 000 Bildern pro Sekunde haben sie so sichtbar gemacht, was genau geschieht, wenn sich das Gecko-Tape vom Haftgrund löst. „Das Ablöseverhalten der einzelnen pilzkopfförmigen Mikrostrukturen haben wir uns, zeitlich und räumlich mit höchster Auflösung, unterm Mikroskop angesehen“, erklärt Physikingenieur Lars Heepe.

Einheitliche Spannungsverteilung sorgt für gute Haftung

„Dabei zeigte sich, dass der eigentliche Moment des Ablösens, also der Zeitraum von der Entstehung eines Defekts in der Kontaktfläche bis zur vollständigen Ablösung, nur wenige Mikrosekunden lang ist.“ Der Kontakt reißt dabei mit bis zu 60 Prozent der Schallgeschwindigkeit des Haftmaterials, also etwa zwölf Meter pro Sekunde, ab. „Das ist nur möglich, wenn zwischen dem pilzkopfförmigen Haftelement und dem Untergrund eine einheitliche Spannungsverteilung vorherrscht“, erklärt Heepe.

Und genau diese einheitliche Spannungsverteilung bewirkt den extremen Hafteffekt der pilzkopfförmigen Geometrie. Eine simple Stempelgeometrie erzeugt hingegen Spannungskonzentrationen, die bewirken, dass sich das Material an den Kanten ablöst. Die dünne Haftplatte bei den Pilzköpfen beim künstlich hergestellten Gecko-Tape verhindern solche Spannungsspitzen. Daher löst sich das Material von innen nach außen ab. Dafür muss sehr viel Kraft aufgewendet werden – entsprechend stark ist die Haftung.

Erkenntnisse fließen in Sonderforschungsbereich der CAU ein

„Mit unseren Experimenten haben wir einen wichtigen Effekt eines in der Natur sehr erfolgreichen Haftmechanismus entschlüsseln können“, fasst Heepe die Arbeit des interdisziplinär besetzten Teams von der CAU zusammen. Mit ihren Ergebnissen haben die Forscher eine Grundlage geschaffen, um bestehende künstliche Haftstrukturen weiterzuentwickeln und zu verbessern. Die Erkenntnisse aus der Hochgeschwindigkeitsforschung sollen in den Sonderforschungsbereich 677 der CAU mit dem Titel „Funktion durch Schalten“ einfließen. Dieser umfasst derzeit 18 aktive Projekte und läuft seit Juli 2011. Die jetzt gestartete zweite Förderperiode geht bis 2015. Sie ist mit einem Budget von acht Millionen Euro ausgestattet.

(a-c): Drei verschiedene einzelne pilzkopfförmige Haftelemente des Gecko®-Tapes in Kontakt mit Glas (dunkle Bereiche).(d-f): Zeitlich farbkodierte Ablösekarte der Haftelemente aus (a-c). Blaue Bereiche lösen sich zuerst, rote zuletzt und Bereiche gleicher Farbe lösen sich zur gleichen Zeit. (g-i): farbkodierte Geschwindigkeitskarte der lokalen Rissausbreitungsgeschwindigkeiten. 

(a-c): Drei verschiedene einzelne pilzkopfförmige Haftelemente des Gecko®-Tapes in Kontakt mit Glas (dunkle Bereiche).(d-f): Zeitlich farbkodierte Ablösekarte der Haftelemente aus (a-c). Blaue Bereiche lösen sich zuerst, rote zuletzt und Bereiche gleicher Farbe lösen sich zur gleichen Zeit. (g-i): farbkodierte Geschwindigkeitskarte der lokalen Rissausbreitungsgeschwindigkeiten.

Quelle: Heepe et al.

Seit 2011 wird im Rahmen des Sonderforschungsbereiches 677 „Funktion durch Schalten“ an den verschiedensten Mikroschalter-Systemen geforscht. Das Teilprojekt C10 befasst sich mit photoschaltbaren Adhäsiven. Ausgangspunkt der Forschung ist die Mikrostruktur der Füße von Insekten und Geckos, deren erstaunliche Fähigkeit, auf Wänden zu laufen, die Wissenschaft seit Jahren fasziniert.

Schaltbare Haftung durch farbiges Licht erzeugen

In diesem Teilprojekt geht es um das Ziel, Haftsysteme zu schaffen, die sich durch Bestrahlung mit Licht bestimmter Wellenlängen in einen Haft- und Antihaftzustand versetzen lassen können. Also zum Beispiel ein Haftsystem, welches unter blauem Licht eine extreme Haftfähigkeit mitbringt und unter rotem Licht leicht zu lösen ist.

 

Ein Beitrag von:

  • Detlef Stoller

    Detlef Stoller ist Diplom-Photoingenieur. Er ist Fachjournalist für Umweltfragen und schreibt für verschiedene Printmagazine, Online-Medien und TV-Formate.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.