Stärkere Smartphone-Akkus 15.01.2015, 08:42 Uhr

Zerstoßenes Spezialglas macht Akkus zu Leistungswundern

Mit zerstoßenem Spezialglas und einer Beschichtung aus Kohlenstoffatomen erhöhen Schweizer Wissenschaftler die Kapazität von Lithium-Ionen-Akkus. Im Labor funktioniert das bereits. Jetzt arbeiten sie daran, die Lebensdauer der neuen Stromspender zu erhöhen, um leistungsstärkeren Smartphone-Akkus den Weg zu ebnen. 

Smartphones sind dank Kamera und anderer Multimedia-Funktionen wahre Stromfresser. Die neue Elektrode der ETH-Forscher kann dreimal mehr Lithium-Ionen aufnehmen. Sie könnte der Startschuss für eine neue Generation leistungsfähigerer Akkus sein. 

Smartphones sind dank Kamera und anderer Multimedia-Funktionen wahre Stromfresser. Die neue Elektrode der ETH-Forscher kann dreimal mehr Lithium-Ionen aufnehmen. Sie könnte der Startschuss für eine neue Generation leistungsfähigerer Akkus sein. 

Foto: dpa/Peter Steffen

Spätestens am Abend ist der Akku eines viel benutzten Smartphones leer. Denn dessen unzählige Funktionen verbrauchen eine Menge Strom. Mit einer neuartigen Lithium-Ionen-Batterie reicht die gespeicherte Energie doppelt so lange, so die ersten Erkenntnisse von Wissenschaftlern der Eidgenössischen Technischen Hochschule Zürich.

Top Stellenangebote

Zur Jobbörse
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
MB Global Engineering GmbH & Co. KG-Firmenlogo
Projektleiter Elektrotechnik (m/w/d) MB Global Engineering GmbH & Co. KG
Darmstadt Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Projektingenieur (m/w/d) im Bereich Maschinen- und Anlagentechnik Nitto Advanced Film Gronau GmbH
Städtische Wohnungsgesellschaft Eisenach mbH-Firmenlogo
Bauingenieur Hochbau / Architekt (m/w/d) Städtische Wohnungsgesellschaft Eisenach mbH
Eisenach Zum Job 
Dorsch Gruppe-Firmenlogo
Projektleiter (m/w/d) Tragwerksplanung mit Perspektive auf Fachbereichsleitung Dorsch Gruppe
Wiesbaden Zum Job 
IT-Consult Halle GmbH-Firmenlogo
Trainee SAP HCM / Personalwirtschaft (m/w/d) IT-Consult Halle GmbH
Halle (Saale) Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Projektingenieur für Brückenbau / Tunnelbau / Ingenieurbau (w/m/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
München Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Dipl. Ing. (FH) (w/m/d) der Fachrichtung Wasserwirtschaft, Umwelt, Landespflege oder vergleichbar Regierungspräsidium Freiburg
Freiburg im Breisgau Zum Job 
Clariant SE-Firmenlogo
Techniker* für Automatisierungstechnik Clariant SE
Oberhausen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieurin oder Bauingenieur in der Schlichtungsstelle (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Big Dutchman International GmbH-Firmenlogo
Ingenieur / Techniker / Meister (m/w/d) Big Dutchman International GmbH
BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG-Firmenlogo
Entwickler / Konstrukteur für die Verdichterentwicklung (m/w/x) BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG
Großenhain Zum Job 
Griesemann Gruppe-Firmenlogo
Ingenieur Verfahrenstechnik / Prozessingenieur (m/w/d) Griesemann Gruppe
Wesseling, Köln Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Fachingenieur Netzbetrieb Strom (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 
Hamburger Wasser-Firmenlogo
Ingenieur/Referent (m/w/d) Vergabe Ingenieur-/ Bauleistungen Hamburger Wasser
Hamburg Zum Job 
Möller Medical GmbH-Firmenlogo
Industrial Engineer (m/w/d) Möller Medical GmbH
RWE Technology International GmbH-Firmenlogo
Projektmanager (m/w/d) Anlagenrückbau RWE Technology International GmbH
MÜNZING CHEMIE GmbH-Firmenlogo
Prozessoptimierer (m/w/d) für die chemische Industrie MÜNZING CHEMIE GmbH
Elsteraue Zum Job 
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
COO (m/w/d) über ifp | Executive Search. Management Diagnostik.
Norddeutschland Zum Job 
JOSEPH VÖGELE AG-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik Hardwareentwicklung/Elektrokonstruktion JOSEPH VÖGELE AG
Ludwigshafen am Rhein Zum Job 

Ein Team unter Leitung von Semih Afyon und des emeritierten Chemieprofessors Reinhard Nesper hat eine neuartige Elektrode entwickelt, die dreimal mehr Lithium-Ionen, die Quellen des Batteriestroms, aufnehmen kann als bisherige Elektroden aus Lithium-Eisen-Phosphat.

Die neuartige Kathode ist ein Vanadat-Borat-Glas. Das Material entsteht aus Vanadiumpentoxid (V2O5) und Lithium-Borat (LiBO2). Die Ausgangsstoffe werden sorgfältig vermischt und bei einer Temperatur von 900 Grad Celsius geschmolzen. Das flüssige Material kühlen die Forscher dann blitzschnell ab. Es entstehen hauchdünne Glasplättchen. Diese werden zu Vanadat-Borat-Pulver zerstoßen, um die aktive Oberfläche zu vergrößern.

Zum Schluss beschichten die Forscher die feinen Partikel mit einer nanometerdicken Schicht aus Kohlenstoffatomen (ein Nanometer ist ein millionstel Millimeter), um die Leitfähigkeit zu verbessern und das Elektrodenmaterial zu schützen. „Das Glas ist ein neuartiges Material, im Endeffekt also weder Vanadiumpentoxid noch Lithium-Borat“, sagt Afyon.

Forscher experimentierten zunächst mit Vanadiumpentoxid

Die Wissenschaftler in Zürich hatten anfangs mit Kathoden aus Vanadiumpentoxid experimentiert. Dieses Material ist kristallin aufgebaut. Die Moleküle bilden ein Gitter, das Lithiumionen in großen Mengen aufnimmt. Doch es gibt beim Entladen der Batterie nicht alle frei. Einige verschanzen sich gewissermaßen in der Kristallstruktur. Außerdem veränderte sich das Volumen der Elektroden beim Laden und Entladen. Das zerstört die Struktur schon nach wenigen Zyklen und damit die Speicherfähigkeit für elektrische Energie.

Dieses Material könnte die Batterieleistung drastisch vergrößern: Vanadat-Borat-Glas. Es wird zu Vanadat-Borat-Pulver zerstoßen, um die aktive Oberfläche zu vergrößern. Zum Schluss beschichten die Forscher die feinen Partikel mit einer nanometerdicken Schicht aus Kohlenstoffatomen.

Dieses Material könnte die Batterieleistung drastisch vergrößern: Vanadat-Borat-Glas. Es wird zu Vanadat-Borat-Pulver zerstoßen, um die aktive Oberfläche zu vergrößern. Zum Schluss beschichten die Forscher die feinen Partikel mit einer nanometerdicken Schicht aus Kohlenstoffatomen.

Quelle: ETH Zürich/Peter Rüegg

Die Einbindung des Materials in Glas, das eine amorphe Struktur hat, also ein wildes Durcheinander von Molekülen bildet, verstopft die Schlupflöcher und verhindert die zerstörerische Volumenänderung.

100 Ladezyklen sind schon geschafft

Elektroden, die nicht mit Kohlenstoff beschichtet waren, hielten gerade mal 30 Ladezyklen durch, obwohl die Stromentnahme bescheiden war. Die Kohlenstoffbeschichtung sorgt dafür, dass die Kapazität der Batterie nach 100 Zyklen noch nicht abfällt. Was auch noch nicht reicht, um leistungsfähigere Batterien für elektronische Kleingeräte und Elektroautos sowie Pufferspeicher für überschüssigen Wind- und Solarstrom zu bauen.

Deshalb arbeitet jetzt ein Konsortium unter Jennifer Rupp, Professorin für Elektrochemische Materialien, in dem Afyon Projektleiter ist, an einer neuartigen Feststoffbatterie. In diesem System wird die Vanadat-Borat-Elektrode eingesetzt. Ehe sie kommerziell nutzbar ist, werden allerdings noch ein paar Jahre vergehen, dämpfen die Forscher zu große Erwartungen.

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.